www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Diskussion einer e-Funktion
Diskussion einer e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskussion einer e-Funktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:26 Di 08.12.2009
Autor: Nicicole

Aufgabe
gegeben ist folgende Funktion: f(x)= [mm] x^{2}\*e^{-x} [/mm]

Treffe Aussagen hinsichtlich:
a) der Definitionsmenge
b) der Nullstellen
c) dem y-Achsenschnittpunkt
d) dem Verhalten der Funktion
e) den Ableitungen f', f'', f'''
f) den Extremwerten
g) den Wendepunkt

Hi

Also ich habe die Aufgabe gemacht, allerdings bin ich stutzig geworden, als ich die Extrema und die Wendepunkte berechnet habe...

Wäre nett, wenn sich das jemand anschauen würde und mir dann sagen könnte, ob da ein Fehler ist.


b)
f(x)=0        x=o [mm] \Rightarrow [/mm] N(0/0)  
Begründung: [mm] e^{-x} [/mm] kann nie 0 werden

c)
x=0            f(x)=0 [mm] \Rightarrow [/mm] Sy(0/0)

d)
[mm] \limes_{x\rightarrow\infty} (x^{2}) [/mm] = [mm] \infty [/mm]

[mm] \limes_{x\rightarrow-\infty} (x^{2}) [/mm] = [mm] -\infty [/mm]

e)
       f'(x)= [mm] e^{-x} \* (-x^{2}+2x) [/mm]

              f''(x)= [mm] e^{-x} \* (x^{2}-2x) [/mm]

                       f'''(x)= [mm] e^{-x} \* (-x^{2}+4x-2) [/mm]

f)

[mm] x_{1}=0 \Rightarrow [/mm]  SP ( 0/0)
[mm] x_{2}=2 \Rightarrow [/mm]  SP ( 2/0.541)

g)
[mm] x_{1}=0 \Rightarrow [/mm]  WP (0/0)
[mm] x_{2}=2 \Rightarrow [/mm]  WP (2/0.541)

Vielen Dank im Vorraus
MfG
Nicicole






        
Bezug
Diskussion einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Di 08.12.2009
Autor: MathePower

Hallo Nicicole,


> gegeben ist folgende Funktion: f(x)= [mm]x^{2}\*e^{-x}[/mm]
>  
> Treffe Aussagen hinsichtlich:
>  a) der Definitionsmenge
>  b) der Nullstellen
>  c) dem y-Achsenschnittpunkt
>  d) dem Verhalten der Funktion
>  e) den Ableitungen f', f'', f'''
>  f) den Extremwerten
>  g) den Wendepunkt
>  Hi
>  
> Also ich habe die Aufgabe gemacht, allerdings bin ich
> stutzig geworden, als ich die Extrema und die Wendepunkte
> berechnet habe...
>  
> Wäre nett, wenn sich das jemand anschauen würde und mir
> dann sagen könnte, ob da ein Fehler ist.
>  
>
> b)
>  f(x)=0        x=o [mm]\Rightarrow[/mm] N(0/0)  
> Begründung: [mm]e^{-x}[/mm] kann nie 0 werden
>  
> c)
>  x=0            f(x)=0 [mm]\Rightarrow[/mm] Sy(0/0)
>  
> d)
>  [mm]\limes_{x\rightarrow\infty} (x^{2})[/mm] = [mm]\infty[/mm]
>  
> [mm]\limes_{x\rightarrow-\infty} (x^{2})[/mm] = [mm]-\infty[/mm]


Hier ist das Verhalten von f gegen [mm]\pm \infty[/mm] gefragt:

[mm]\limes_{x\rightarrow\infty}x^{2}*e^{-x}= \ ...[/mm]

[mm]\limes_{x\rightarrow -\infty}x^{2}*e^{-x}= \ ...[/mm]


>  
> e)
>         f'(x)= [mm]e^{-x} \* (-x^{2}+2x)[/mm]
>  
> f''(x)= [mm]e^{-x} \* (x^{2}-2x)[/mm]


f'' ist hier -f', was nicht sein kann.


>  
> f'''(x)= [mm]e^{-x} \* (-x^{2}+4x-2)[/mm]
>  
> f)
>  
> [mm]x_{1}=0 \Rightarrow[/mm]  SP ( 0/0)
>  [mm]x_{2}=2 \Rightarrow[/mm]  SP ( 2/0.541)
>  
> g)
>  [mm]x_{1}=0 \Rightarrow[/mm]  WP (0/0)
>  [mm]x_{2}=2 \Rightarrow[/mm]  WP (2/0.541)
>  
> Vielen Dank im Vorraus
> MfG
>  Nicicole
>  
>


Gruss
MathePower

Bezug
                
Bezug
Diskussion einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Di 08.12.2009
Autor: abakus


> Hallo Nicicole,
>  
>
> > gegeben ist folgende Funktion: f(x)= [mm]x^{2}\*e^{-x}[/mm]
>  >  
> > Treffe Aussagen hinsichtlich:
>  >  a) der Definitionsmenge
>  >  b) der Nullstellen
>  >  c) dem y-Achsenschnittpunkt
>  >  d) dem Verhalten der Funktion
>  >  e) den Ableitungen f', f'', f'''
>  >  f) den Extremwerten
>  >  g) den Wendepunkt
>  >  Hi
>  >  
> > Also ich habe die Aufgabe gemacht, allerdings bin ich
> > stutzig geworden, als ich die Extrema und die Wendepunkte
> > berechnet habe...
>  >  
> > Wäre nett, wenn sich das jemand anschauen würde und mir
> > dann sagen könnte, ob da ein Fehler ist.
>  >  
> >
> > b)
>  >  f(x)=0        x=o [mm]\Rightarrow[/mm] N(0/0)  

Hallo,
das ist falsch. Die Nullstelle ist NICHT der Punkt N(0|0), sondern die Zahl x=0.

> > Begründung: [mm]e^{-x}[/mm] kann nie 0 werden
>  >  
> > c)
>  >  x=0            f(x)=0 [mm]\Rightarrow[/mm] Sy(0/0)
>  >  
> > d)
>  >  [mm]\limes_{x\rightarrow\infty} (x^{2})[/mm] = [mm]\infty[/mm]
>  >  
> > [mm]\limes_{x\rightarrow-\infty} (x^{2})[/mm] = [mm]-\infty[/mm]

Aber es sind doch alle Funktionswerte nichtnegativ!

>  
>
> Hier ist das Verhalten von f gegen [mm]\pm \infty[/mm] gefragt:
>  
> [mm]\limes_{x\rightarrow\infty}x^{2}*e^{-x}= \ ...[/mm]

Steht dir die Regel von l'Hospital zur Verfügung?

>  
> [mm]\limes_{x\rightarrow -\infty}x^{2}*e^{-x}= \ ...[/mm]
>  
>
> >  

> > e)
>  >         f'(x)= [mm]e^{-x} \* (-x^{2}+2x)[/mm]
>  >  
> > f''(x)= [mm]e^{-x} \* (x^{2}-2x)[/mm]
>  
>
> f'' ist hier -f', was nicht sein kann.
>  
>

Womit er wohl meint: wende auch hier die Produktregel für die höheren Ableitungen an.

> >  

> > f'''(x)= [mm]e^{-x} \* (-x^{2}+4x-2)[/mm]
>  >  
> > f)
>  >  
> > [mm]x_{1}=0 \Rightarrow[/mm]  SP ( 0/0)
>  >  [mm]x_{2}=2 \Rightarrow[/mm]  SP ( 2/0.541)
>  >  
> > g)
>  >  [mm]x_{1}=0 \Rightarrow[/mm]  WP (0/0)

Das kann kein WP sein. Alle Funktionswerte sind positiv mit Ausnahme von f(0)=0. Also ist (0|0) ein Tiefpunkt.
Gruß Abakus

>  >  [mm]x_{2}=2 \Rightarrow[/mm]  WP (2/0.541)
>  >  
> > Vielen Dank im Vorraus
> > MfG
>  >  Nicicole
>  >  
> >
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Diskussion einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Di 08.12.2009
Autor: Nicicole

dadurch, dass meine Ableitungen falsch waren, sind ja natürlich auch meine Extrema und Wendepunkte verkehrt... Ich hoffe das die Ableitungen nun richtig sind... Das berechnen ist ja nicht schwer, hab nur ein paar Flüchtigkeitsfehler gemacht und mich dann gewundert, was da raus gekommen ist!

Vielen lieben Dank

Bezug
                
Bezug
Diskussion einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 08.12.2009
Autor: Nicicole

okay... hab den Fehler gefunden!
Meine neuen Ableitungen
f'(x)= [mm] e^{-x} \* (-x^{2}+2x) [/mm]
f''(x)= [mm] e^{-x} \* (x^{2}-4x+2) [/mm]
f'''(x)= [mm] e^{-x} \* (-x^{2}+6x-6) [/mm]

[mm] \limes_{x\rightarrow\infty} x^{2} \* e^{-x} [/mm] = 0

[mm] \limes_{x\rightarrow-\infty} x^{2} \* e^{-x} =\infty [/mm]

Ist das denn richtig?

Bezug
                        
Bezug
Diskussion einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Di 08.12.2009
Autor: fencheltee


> okay... hab den Fehler gefunden!
>  Meine neuen Ableitungen
>  f'(x)= [mm]e^{-x} \* (-x^{2}+2x)[/mm]
>  f''(x)= [mm]e^{-x} \* (x^{2}-4x+2)[/mm]
>  
> f'''(x)= [mm]e^{-x} \* (-x^{2}+6x-6)[/mm]
>  
> [mm]\limes_{x\rightarrow\infty} x^{2} \* e^{-x}[/mm] = 0
>  
> [mm]\limes_{x\rightarrow-\infty} x^{2} \* e^{-x} =\infty[/mm]
>  
> Ist das denn richtig?

die ableitungen sind auf jeden fall schonmal richtig

hast du beim 1. grenzwert mit l'hopital gearbeitet? oder hast du das einfach so rausgefunden?
die ergebnisse stimmen aber

gruß tee


Bezug
                                
Bezug
Diskussion einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Di 08.12.2009
Autor: Nicicole

habe einfach mal die 1 bzw. (-1) und die 10 bzw. (-10) für x eingesetzt und geschaut, wie sich das entwickelt. l'hopital hab ich noch nie was von gehört...

vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]