www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Diskussion der funktion cos(x)
Diskussion der funktion cos(x) < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskussion der funktion cos(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Mo 19.06.2006
Autor: vvicky

Aufgabe
Diskutieren sie die Funktion cos(x)!

ich weiß nicht wie das geht, da  ich nicht darauf komme wie man hier die symmetrie angibt und ich weiß auch nicht wie man nullstellen, wendepunkte und extrempunkt angibt, da es ja unendlich sind... helft mir bitte!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
lg wicky

        
Bezug
Diskussion der funktion cos(x): Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 19.06.2006
Autor: Teufel

An Symmetrie würde ich sagen, dass sie achsensymmetrisch zur y-Achse ist (einfach den Grafen angucken).
Und bei Nullstellen und Extrempunkten etc. brauchst du noch ein k um diese Unendlichkeit auszudrücken.
Siehe https://matheraum.de/read?t=159722 <- hier.
Aber nochmal ein Beispiel:
Bestimmung der Nullstellen:
Du weisst, dass f(x)=cos(x) die x-Achse bei allen ungeraden  [mm] \bruch{1}{2}\pi [/mm] schneidet [mm] (\bruch{1}{2}\pi, \bruch{3}{2}\pi, \bruch{5}{2}\pi, -\bruch{1}{2}\pi,...) [/mm]
Und das wiederholt sich immer wieder. Gleich bleibt aber immer die 2 im Nenner und das Pi. Nur im Zähler muss die zahl ungerade werden. Und dazu nimmst du jetzt eine andere Variable k [mm] \in \IR. [/mm]
Die Formel für die Nullstellen würde lauten:
[mm] x_{N}= \bruch{2k+1}{2}\pi, [/mm] k [mm] \in \IR. [/mm]
Du kannst also alle natürlichen Zahlen (und die 0) für k einsetzen und erhälst immer ein ungerades [mm] \pi. [/mm] Damit hast du alle Nullstellen angegeben!

Bezug
        
Bezug
Diskussion der funktion cos(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 19.06.2006
Autor: vvicky

Aufgabe
cos(x9 im einheitskreis?

unsere lehrerin miente irgendwie wir müssten wissen wie cosx sich im einheitskreis verhält. aber ich wieß überhaupt nicht mehr wie das geht bzw. dsa aussehen muss...
das mit den nullstellen und so hab ich jetzt verstanden!! danke!
lg

Bezug
                
Bezug
Diskussion der funktion cos(x): Wikipedia
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 19.06.2006
Autor: informix

Hallo Vicky und [willkommenmr],
> cos(x9 im einheitskreis?

[guckstduhier] []Wikipedia

>  unsere lehrerin miente irgendwie wir müssten wissen wie
> cosx sich im einheitskreis verhält. aber ich wieß überhaupt
> nicht mehr wie das geht bzw. dsa aussehen muss...
> das mit den nullstellen und so hab ich jetzt verstanden!!

Gruß informix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]