www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Diskrete und stetige Verteilun
Diskrete und stetige Verteilun < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete und stetige Verteilun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 23.01.2006
Autor: thales

Aufgabe
Das Gewicht einer Bevölkerung sei nach N(72,100) verteilt. Wie groß muss der Stichprobenumfang gewählt werden, damit das mittlere Gewicht der Personen mit einer Wahrscheinlichkeit von a) 0.9 ;    b) 0.95 ;    c) 0,99
mehr als 10kg beträgt?

Ich glaube mir fehlen die richtigen Formeln und die richtige Ansatzweise um diese Aufgabe zu lösen. Kann mir bitte jemand weiterhelfen?
Danke,
wolfi


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diskrete und stetige Verteilun: Antwort
Status: (Antwort) fertig Status 
Datum: 01:13 Di 24.01.2006
Autor: djmatey

Hallo,
1) wenn Du eine Zufallsvariable X gegeben hast, die N(a, [mm] \sigma^{2})-verteilt [/mm] ist, gilt für Y=cX+d  mit c,d [mm] \in \IR, [/mm] dass Y  N(ca+d, [mm] c^{2}\sigma^{2})-verteilt [/mm] ist.
2) wenn Du Zufallsvariablen X und Y gegeben hast, die [mm] N(a_{1}, \sigma_{1}^{2}) [/mm] bzw. [mm] N(a_{2}, \sigma_{2}^{2})-verteilt [/mm] sind, ist X+Y gerade [mm] N(a_{1}+a_{2}, \sigma_{1}^{2}+\sigma_{2}^{2})-verteilt. [/mm]
Daher gilt für Dein Stichprobenmittel
[mm] \bruch{1}{n} \sum_{i=1}^{n} X_{i} [/mm]  ,
dass es [mm] N(72,\bruch{100}{n}) [/mm] verteilt ist!
Die Wahrscheinlichkeit dafür, dass das mittlere Gewicht mehr als 10kg beträgt, ist nun
[mm] P(\bruch{1}{n} \sum_{i=1}^{n} X_{i} \ge [/mm] 10) = [mm] N(72,\bruch{100}{n})(10,\infty) [/mm]
was nun noch zu berechnen ist.
Dabei wäre noch zu überlegen, ob man wirklich bis [mm] \infty [/mm] integrieren muss, oder ob man eine (vernünftige) Grenze angibt, über die das Gewicht der Personen nie steigt.
Das wäre jedenfalls mein Ansatz - hoffe, es hilft Dir weiter ;-)
Liebe Grüße,
Matthias.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]