www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Disjunkte vereinigung
Disjunkte vereinigung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Disjunkte vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 So 02.11.2008
Autor: Fuchsschwanz

Hallo!
Ich will zeigen, dass [mm] A=\bigcup_{[x]\in A/\sim}^{.} [/mm] [x] ist.

Dabei bekomme ich A [mm] \subseteq \bigcup_{[x]\in A/\sim}^{.} [/mm] [x] auch hin, aber die andere Seite krieg ich nicht hin. Jemand nen Tipp?

Ich weiß, dass für x,y [mm] \in [/mm] A gilt [x]=[y] oder [mm] [x]\cap [/mm] [y]= [mm] \emptyset [/mm]

Hilft mir das irgendwie dabei?

        
Bezug
Disjunkte vereinigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 So 02.11.2008
Autor: Genius-at-work

´Kannst du das bitte lesbar machen?

Bezug
        
Bezug
Disjunkte vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:11 Mo 03.11.2008
Autor: Fuchsschwanz

hmmm...folgt das vllt. daraus, dass ich weiß, dass die disjunkte Vereinigung alle Äquivalenzklassen der Menge der Äquivalenzklassen enthält und in den Äquivalenzklassen nur Elemente aus A sind?

Bezug
                
Bezug
Disjunkte vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Mo 03.11.2008
Autor: andreas

hi

> und in den Äquivalenzklassen nur
> Elemente aus A sind?

genau daraus folgt das. es ist doch für jedes $x [mm] \in [/mm] A$ : $[x] = [mm] \{y \in A : y \sim x\} \subseteq [/mm] A$. damit ist die gesamte vereinigung dann aber natürlich auch eine teilmenge von $A$.


grüße
andreas


Bezug
                        
Bezug
Disjunkte vereinigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:27 Mo 03.11.2008
Autor: Fuchsschwanz

danke!

für die andere Seite würde ich nun sagen:

x sei Element [x] und Element A, dann ist x Element [mm] A/\sim, [/mm] und damit Teil der disjunkten Vereinigung

Richtig?

Bezug
                                
Bezug
Disjunkte vereinigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Mi 05.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Disjunkte vereinigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:14 Mi 05.11.2008
Autor: Fuchsschwanz

Hallo!

Ich habe die folgenden Sätze:

1) Seien x,y [mm] \in [/mm] A. Dann gilt [x]=[y] oder [mm] [x]\cap [y]=\emptyset [/mm]

2) A= [mm] \bigcup_{[x]\in A~}^{.}[x] [/mm]

Nun habe ich als Beweis für das zweite mitgeschrieben, dass die "Richtung"
[mm] \bigcup_{[x]\in A~}^{.}[x]\subseteq [/mm] A, aus dem 1. Satz folgt. Dies erschließt sich mir nicht...finde es eigentlich recht trivial, dass alle Äquivalenzklassen zusammen A ergeben, aber was hat das mit dem ersten Satz zu tun?

die andere Richtung:

Da habe ich bekommen, dass dies daraus folgt, dass [mm] x\in [/mm] [x] ist....dies liegt daran, dass jedes Element von A in einer Äquivalenzklasse enthalten ist?


Bezug
                
Bezug
Disjunkte vereinigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Fr 07.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]