Diophantische Gleichung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:01 Fr 01.05.2009 | Autor: | Leni-H |
Aufgabe | Seien a,b,c [mm] \in \IZ [/mm] mit [mm] a^2+b^2 \not= [/mm] 0. Uns sei [mm] \mathcal{L}:=\{\vektor{x \\ y} \in \IZ^2 ; ax+by=c \} [/mm] die Menge der zu a,b und c gehörigen linearen Diophantischen Gleichung in zwei Variablen.
a) Zeigen Sie # [mm] \mathcal{L}=0 \gdw [/mm] ggt(a,b) teilt nicht c
b) Es gelte ggt(a,b) teilt c und es sei [mm] \vektor{u \\ v} \in \IZ^2 [/mm] mit au+bv=c. Geben Sie sämtliche Elemente von [mm] #\mathcal{L} [/mm] an.
c) Das "Hunder-Vögel-Problem" (chang Ch'in Chien, 5. Jhd. n.C.):
Ein Hahn kostet fünf Ch'ien, eine Henne kostet drei Ch'ien und drei Küken kosten einen Ch'ien.
Für einhundert Ch'ien erhält man einhundert Vögel.
Wieviele Hähne, Hennen und wieviele Küken sind das? |
Hallo,
ich habe Probleme bei obiger Aufgabe. Den Teil a) habe ich hinbekommen. Aber bei b) komme ich nicht weiter. Ich weiß ja, dass der Vektor [mm] \vektor{u \\ v} \in #\mathcal{L} [/mm] ist. Alle anderen Elemente von [mm] #\mathcal{L} [/mm] seien jetzt vektor{u* [mm] \\ [/mm] v*}. Dann muss ich jetzt irgendwie u* und v* in Abhängigkeit von u bzw. v angeben, oder?
Irgendwie probier ich schon lange rum und komme auf kein befriedigendes Ergebnis. Habt ihr mir einen Tipp?
Danke schonmal!
LG!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:20 Fr 01.05.2009 | Autor: | abakus |
> Seien a,b,c [mm]\in \IZ[/mm] mit [mm]a^2+b^2 \not=[/mm] 0. Uns sei
> [mm]\mathcal{L}:=\{\vektor{x \\ y} \in \IZ^2 ; ax+by=c \}[/mm] die
> Menge der zu a,b und c gehörigen linearen Diophantischen
> Gleichung in zwei Variablen.
>
> a) Zeigen Sie # [mm]\mathcal{L}=0 \gdw[/mm] ggt(a,b) teilt nicht c
>
> b) Es gelte ggt(a,b) teilt c und es sei [mm]\vektor{u \\ v} \in \IZ^2[/mm]
> mit au+bv=c. Geben Sie sämtliche Elemente von [mm]#\mathcal{L}[/mm]
> an.
>
> c) Das "Hunder-Vögel-Problem" (chang Ch'in Chien, 5. Jhd.
> n.C.):
> Ein Hahn kostet fünf Ch'ien, eine Henne kostet drei Ch'ien
> und drei Küken kosten einen Ch'ien.
> Für einhundert Ch'ien erhält man einhundert Vögel.
> Wieviele Hähne, Hennen und wieviele Küken sind das?
> Hallo,
>
> ich habe Probleme bei obiger Aufgabe. Den Teil a) habe ich
> hinbekommen. Aber bei b) komme ich nicht weiter. Ich weiß
> ja, dass der Vektor [mm]\vektor{u \\ v} \in #\mathcal{L}[/mm] ist.
> Alle anderen Elemente von [mm]#\mathcal{L}[/mm] seien jetzt
> vektor{u* [mm] \\ [/mm] v*}. Dann muss ich jetzt irgendwie u* und v*
> in Abhängigkeit von u bzw. v angeben, oder?
> Irgendwie probier ich schon lange rum und komme auf kein
> befriedigendes Ergebnis. Habt ihr mir einen Tipp?
Hallo,
mache es mal konkret.
Die Gleichung 3x+5y=17 hat z.B. die konkrete Lösung (4;1), denn 3*4+5*1=17.
Den Wert 17 erhält man auch, wenn man 4 erhöht und 1 entsprechend verkleinert (so dass der Zuwachs an Vielfachen von 3 gerade durch eine Abnahme von Vielfachen von 5 kompensiert wird.
Das geht zum ersten mal, wenn man 5 mal 3 dazugibt und gleichzeitig 3 mal 5 wegnimmt.
Wenn (4;1) eine Lösung ist, dann auch (4+5;1-3).
Allgemein: (4+5k; 1-3k)
Die Zahlen 3 und 5 aus der dioph. Gl. tauchen also in der Lösung wieder auf: in umgekehrter Reihenfolge und eine von beiden mit geändertem Vorzeichen. Hier war allerdings der ggt von 3 und 5 gleich 1.
Verdoppeln wir mal die Gleichung zu 6x+10y=34.
Natürlich haben wir wieder die Losung (4;1), und wir bekommen eine weitere Lösung, wenn wir zur 4 ein Vielfaches von 10 addieren und von 1 ein Vielfaches von 6 subtrahieren.
Das ist aber nicht die nächste, sondern die übernächste Lösung.
Es ist nämlich nicht nur der Zuwachs 10*6 gleich der Abnahme 6*10; es hätte bereits die Zunahme 5*6 durch die Abnahme 3*10 ausgeglichen werden können.
Da hier der ggt von 6 und 2 gleich 2 ist, sind unsere Lösungen [mm] (4+\bruch{10}{2}k;1-\bruch{6}{2}k)
[/mm]
Dieses konkrete Beispiel kannst du auf allgemeine Werte a,b übertragen.
Gruß Abakus
>
> Danke schonmal!
>
> LG!!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:02 Sa 02.05.2009 | Autor: | Leni-H |
Hallo Abakus,
vielen Dank für deine Antwort. Das Prinzip habe ich jetzt kapiert. Wenn also (u,v) eine Lösung der Gleichung ax+by=c ist, dann sind auch [mm] (u+\bruch{bk}{ggt(a,b)}; v-\bruch{ak}{ggt(a,b)} [/mm] für alle k [mm] \in \IZ [/mm] Lösungen dieser Gleichung. Nuir wie kann ich das beweisen? Bzw. wie kann ich es zeigen/drauf kommen? Da habe ich immer noch Probleme.
Vielen lieben Dank!
|
|
|
|
|
Hallo Leni-H,
> Hallo Abakus,
>
> vielen Dank für deine Antwort. Das Prinzip habe ich jetzt
> kapiert. Wenn also (u,v) eine Lösung der Gleichung ax+by=c
> ist, dann sind auch [mm](u+\bruch{bk}{ggt(a,b)}; v-\bruch{ak}{ggt(a,b)}[/mm]
> für alle k [mm]\in \IZ[/mm] Lösungen dieser Gleichung. Nuir wie kann
> ich das beweisen? Bzw. wie kann ich es zeigen/drauf kommen?
> Da habe ich immer noch Probleme.
Beweisen kannst Du das, in dem Du dies in die Gleichung einsetzt.
>
> Vielen lieben Dank!
Gruß
MathePower
|
|
|
|