www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Dimensionsberechnungen & mehr
Dimensionsberechnungen & mehr < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimensionsberechnungen & mehr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Mo 30.08.2004
Autor: Fry

Ich habe diese Frage in keinem weiteren Forum gestellt.

Hallo ! :)

Folgende Aufgaben:
1) Bestimmen Sie unter vollständiger Angabe des Lösungswegs:
n= dim [mm] [\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -1 \end{pmatrix}] [/mm]
m= dim [mm] [\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -1 \end{pmatrix},\begin{pmatrix} -\bruch{5}{4} \\ -1 \\ -\bruch{1}{4} \end{pmatrix}] [/mm]

2) Das Gleichsetzen der rechten Seiten der Ebenengleichungen
[mm] E_1: \vec [/mm] x = [mm] \begin{pmatrix} \bruch{5}{4} \\ 1 \\ \bruch{1}{4} \end{pmatrix} +s*\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} +t*\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} [/mm]
[mm] E_2: \vec [/mm] x = [mm] s*\begin{pmatrix} -5 \\ -4 \\ -1 \end{pmatrix} +t*\begin{pmatrix} -4 \\ -5 \\ 1 \end{pmatrix} [/mm]

führt zu einem LGS,dessen Matrix aus den (Spalten-)Vektoren von a) besteht. Wie würden [mm] E_1 [/mm] und [mm] E_2 [/mm] zueinander liegen,wenn
2.1) n=m=2
2.2) n=2 und n=3
2.3)n=m=3 wäre ?

Zu 1)
Ich habe herausgefunden,dass die ersten beiden Vektoren lin. unabhängig sind und  sich die beiden anderen Vektoren durch die ersten beiden darstellen lassen. Reicht das, um zu zeigen,das dim U = 2 ?
Beim zweiten Untervektorraum erhalte ich wieder dim U = 2,da der 5.Vekor ein Vielfaches des 3.Vektors ist.
Zu2)
Hier verstehe ich irgendwie nur Bahnhof :=).
Sind das jetzt nur theoretische Überlegungen? Wenn die Dimension der beiden UVektorräumen anders wäre,d.h. wenn die Vektoren auch anders wären, wie würden dann die Ebenen  zueinander liegen ? oder was ?
Kann mir vielleicht jemand einen Tipp geben,ich blicke gerade nicht so ganz,wie ich an die Aufgabe rangehen soll.
Danke !

MfG
Fry

        
Bezug
Dimensionsberechnungen & mehr: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Mo 30.08.2004
Autor: ladislauradu

Hallo Fry!

1) Deine Überlegungen sind richtig. Allgemein musst du den Rang der Matrix, die aus den Vektoren gebildet ist, bestimmen (zum Beispiel mit dem Gaußalgorithmus).

2) n und m sind fest, wie können sie andere Werte haben? Ich verstehe die Aufgabe auch nicht. Bist du sicher, dass du sie richtig abgeschrieben hast?

Schöne Grüße,
Ladis

Bezug
                
Bezug
Dimensionsberechnungen & mehr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Mo 30.08.2004
Autor: Fry

Hi Ladies,
danke für deine Antwort.
Was meinst du denn genau mit dem Rang der Matrix bzw. wie bestimme ich den  ?
Die Aufgabe habe ich übrigens korrekt abgeschrieben....da bin ich ja erleichtert,dass ich nicht der einzige bin,der die Aufgabe nicht versteht.

Gruß
Fry


Bezug
                        
Bezug
Dimensionsberechnungen & mehr: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mo 30.08.2004
Autor: ladislauradu

Hallo Fry!

Gegeben sei das LGS [mm]A\vec{x}=\vec{b}[/mm]. Dann nennt man die Höchstzahl r der auf der linken Seite erzeugbaren unterschiedlichen Einheitsvektoren den Rang der Matrix A.
Suche mal in Google nach "Gaußalgorithmus".

Schöne Grüße,
Ladislau


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]