www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dimension und Basen
Dimension und Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension und Basen: Idee
Status: (Frage) beantwortet Status 
Datum: 15:48 So 19.02.2006
Autor: Jimmi

Aufgabe
Im  [mm] \IR [/mm] 4 seien die Vektoren a=(1,1,1,1), b=(1,1-1-1), c=(1,-1,1-1),  d=(1,-1,-1,1), e= (2,-2,0,0), f=(3,-1,1,1) gegeben. Weiterhin seinen U1=L{a,b,c} , U2=L{d,e,f}. Bestimmen sie dimU1, dim U2, dim(U1 [mm] \cap [/mm] U2), dim(U1+U2) sowie eine Basis in U1 [mm] \cap [/mm] U2.Ergänzen Sie diese Basis jeweils zu einer Basis in U1, U2, U1+U2

Hallo erst mal!
Komme bei dieser Aufgabe irgendwie nicht weiter, obwohl sie ziemlich leicht zu seien scheint. Dimensionen von U1 und U2 habe ich herausbekommen in den ich die Matrizen in Dreiecksform gebracht habe.(DimU1=DimU2=3). Bei Dim(U1+U2) habe ich die Vektoren in eine Matrix gepackt und in Dreiecksform gebracht.-->???Dim(U1+U2)=4???. Dim(U1 [mm] \cap [/mm] U2) indem ich den Dimensionssatz angewendet habe-->2.Doch ich habe keine Ahnung wie ich jetzt eine Basis von Dim(U1 [mm] \cap [/mm] U2) bestimme und auch nicht wie ich den restlichen Teil löse.
Wäre super wenn mir da jemand einen Tipp geben könnte
Kim

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dimension und Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Mo 20.02.2006
Autor: sara_20

Hallo,
[mm] Dim(U1\cap [/mm] U2) bekommst du so:
Nimm die Basis von U1 und einen neuen beliebeigen Vektor. Mach darraus eine Dreiecksmatrix und du bekommst ein System 1.
Mache das gleiche mit U2 und du bekommst ein zweites System 2.
System1+System2=System3
Loese das System 3 und du bekommst den einen Vektor.
Das gleice machst du nochmal, natuerlich (include) neuen Vektor.

Bezug
                
Bezug
Dimension und Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Mo 20.02.2006
Autor: Jimmi

Ja Hallo!
Danke für die Antwort, aber ich habe es leider nicht ganz verstanden. Hast du mir jetzt erklärt wie ich die Dimension von  dim (U1 [mm] \cap [/mm] U2) oder die Basis von (U1 [mm] \cap [/mm] U2). Und bei der Aufgabe soll man ja erst die Basis von (U1 [mm] \cap [/mm] U2) und daraufhin zu einer Basis in U1, U2, U1+U2 ergänzen. Wäre echt nett wenn du mir nochmal aushilfst. Gruß nach Sarajevo ;-)
Kim

Bezug
                        
Bezug
Dimension und Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 20.02.2006
Autor: sara_20

Hallo,

die Dimension von [mm] U1\cap [/mm] U2 hast du ja gefunden. Und ich habe die Aufgabe eben selbt geloest. Es ist richtig, was du gemacht hast.

Ich habe dir in meiner ersten Nachricht erklaert wie du die Basis von [mm] U1\cap [/mm] U2 findest.

Ja, genau das machst du. Du ergaenzt U1 und U2 mit einen neuen Vektor, der natuerlich linear unabhaengig sein soll sowohl in U1, als auch in U2.
Danach wiederholst du es einfach, denn du brauchst ja zwei Vektoren, da [mm] dim(U1\capU2)=2 [/mm] ist.

Danke fuer die Gruesse und Gruesse zurueck. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]