www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension C, R, Q
Dimension C, R, Q < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension C, R, Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Di 15.01.2008
Autor: hase-hh

Aufgabe
a) Welche Dimension hat [mm] C^5 [/mm] als R-Vektorraum?
b) Welche Dimension hat [mm] C^7 [/mm] als C-Vektorraum?
c) Ist R als Q-Vektorraum endlich erzeugt?

Moin,

würde mich freuen, wenn mir jemand helfen könnte!

a) Wenn dim [mm] (C^5 [/mm] ) = 5  ist, was ich vermute, sollte auch [mm] R^5 [/mm] die Dimension 5 haben???

b) Warum sollte sich bei [mm] C^7 [/mm] als C-Vektorraum die Dimension ändern, würde also folgern dim (C-Vektorraum)=7.

c) Also Q ist eine Teilmenge von R. Hier würde ich sagen nein, da es beliebig viele Elemente in R bzw. in Q gibt...


Danke für eure Hilfe!

Gruß
Wolfgang






        
Bezug
Dimension C, R, Q: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 16.01.2008
Autor: angela.h.b.


> a) Welche Dimension hat [mm]C^5[/mm] als R-Vektorraum?
>  b) Welche Dimension hat [mm]C^7[/mm] als C-Vektorraum?
>  c) Ist R als Q-Vektorraum endlich erzeugt?
>  Moin,
>  
> würde mich freuen, wenn mir jemand helfen könnte!
>  
> a) Wenn dim [mm](C^5[/mm] ) = 5  ist, was ich vermute, sollte auch
> [mm]R^5[/mm] die Dimension 5 haben???
>  
> b) Warum sollte sich bei [mm]C^7[/mm] als C-Vektorraum die Dimension
> ändern, würde also folgern dim (C-Vektorraum)=7.
>  
> c) Also Q ist eine Teilmenge von R. Hier würde ich sagen
> nein, da es beliebig viele Elemente in R bzw. in Q gibt...

Hallo,

so geht das nicht.
Wir sind doch nicht beim Quiz mit Jörg Palaver.

Kläre die Begriffe Erzeugendensystem und Basis.

Kläre, was es bedeutet, wenn von einem [mm] \IR- [/mm] , [mm] \IC- [/mm] oder K-Vektorraum die Rede ist.

zu a) Wenn Du vermutest, daß die Dimension =5 ist, so gibt eine potentielle Basis an und zeige, daß es eine ist.  

zu b) Dasselbe in Grün.

Tip: Löse a) und b) zunächst für [mm] \IC^2. [/mm] Ist ein bißchen übersichtlicher.

c) Die Behauptung stimmt, die Begründung ist abstrus - wenn sie auch einen wahren Kern enthält. Mit Deiner Begründung düften auch a) und b) nicht endlich erzeugt sein.
Der casus knacktus: [mm] \IR [/mm] und [mm] \IQ [/mm] enthalten "unterschiedlich viele" beliebige Elemente.

Gruß v. Angela

Bezug
                
Bezug
Dimension C, R, Q: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Mi 16.01.2008
Autor: hase-hh

Ich glaube, Du meinst Jörg Pilawa. Ok, Preise gibt's nicht... :-)

Danke für die Hinweise!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]