www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Dimension
Dimension < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Do 25.01.2007
Autor: hase-hh

Aufgabe
Gegeben sind die Vektoren [mm] \vec{a}=\vektor{-1\\ 1\\ 2}, \vec{b}=\vektor{2\\ -1\\ 3} [/mm] und [mm] \vec{c}= \vektor{5\\ -3\\ 4} [/mm]

a) Untersuchen Sie diese Vektoren auf lineare Abhängigkeit bzw. Unabhängigkeit.
b) Welche Dimension hat der Vektorraum, der von den drei Vektoren erzeugt wird?

Moin,

zu a)

[mm] r1*\vec{a} [/mm] + [mm] r2*\vec{b} +r3\vec{c} [/mm] = [mm] \vec{0} [/mm]

[mm] \pmat{ -1 & 2 & 5\\ 1 & -1 & -3\\ 2 & 3 & 4} [/mm]

nach umformen:

[mm] \pmat{ -1 & 2 & 5\\ 0 & 1 & 2\\ 0 & 0 & 0} [/mm]

d.h. die vektoren sind linear abhängig. ok.

jetzt weiß ich aber nicht wie ich am besten weiter mache, um die dimension zu bestimmen.

kann man das aus dem LGS erkennen? muss ich einzeln durchprüfen

ob

1) [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm]

2) [mm] \vec{a} [/mm] und [mm] \vec{c} [/mm]

3) [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm]

linear abhängig/unabhängig sind

oder gibt es einen kürzeren Weg?















        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Do 25.01.2007
Autor: Walde

Hi wolfgang,

das macht man, indem man den Rang der Matrix bestimmt. []hier steht  alles, was du wissen musst.

LG walde

Bezug
                
Bezug
Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Do 25.01.2007
Autor: hase-hh

moin walde,

vielen dank!

habe mir mal den link angeschaut. daraus entnehme ich, dass ich den rang und damit die dimension direkt aus dem umgeformten LGS ablesen kann (s. Beispiel dort). Das ist gut!

Außerdem erspart es mir mglw. die ein oder andere frage zum "rang einer matrix".

danke & gruß
wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]