www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dimension-affiner UR
Dimension-affiner UR < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension-affiner UR: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 18:19 Di 25.01.2005
Autor: VHN

Hallo, an alle!

Ich hätte hier eine Frage. Ich weiß nicht, ob das richtig ist, was ich denke.
Vielleicht könnt ihr mich ja verbessern. Danke!

Wenn ich V habe als einen K-Vektorraum, und L sei ein affiner Unterraum von V.
Nun weiß ich, dass dim(L)=n ist.
Wenn ich nun einen weiteren affinen UR habe L´ mit L´ [mm] \subseteq [/mm] L, dann gilt doch, dass dim(L´) < dim(L) ist, oder? Also dim(L´)  [mm] \le [/mm] n-1.
Ich weiß ja, dass dim(L) = dim(U) ist, wenn L=x+U.

Stimmt das, was ich sage? Wenn nicht, bitte ich um Aufkklärung! Danke schön!

Ciao! :-)

        
Bezug
Dimension-affiner UR: Stimmt im Grunde...
Status: (Antwort) fertig Status 
Datum: 19:11 Di 25.01.2005
Autor: Gnometech

...bis darauf, dass Du bei $L' [mm] \subseteq [/mm] L$ nur sagen kannst, dass [mm] $\dim(L') \leq \dim(L)$ [/mm] also in diesem Fall [mm] $\dim(L') \leq [/mm] n$.

Aber was Du ansonsten sagst ist korrekt - ein affiner Unterraum ist quasi ein "verschobener" Unterraum und seine Dimension ist die des verschobenen Vektorraumes selbst. Eine Ebene im [mm] $\IR^3$, [/mm] die nicht durch den Ursprung läuft ist kein Untervektorraum im eigentlichen Sinne, aber ein affiner Unterraum und hat die Dimension 2.

Ebenso hat eine beliebige Gerade (z.B. im [mm] $\IR^2$ [/mm] oder [mm] $\IR^3$) [/mm] Dimension 1 als affiner Unterraum.

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]