www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differenzieren einer Funktion
Differenzieren einer Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 14.12.2006
Autor: McMuskel

Aufgabe
Differenzieren sie die folgende Funktion nach der unabhängigen Variablen.
[mm] y(x)=ln^2(3x^2-6)^3 [/mm]
Summen möglichst weitgehend in Produkte verwandeln, Brüche kürzen!

Erstes Problem:
Kann ich die Funktion so vereinfachen?

[mm] y(x)=ln^2(3x^2-6)^3=ln(3x^2-6)^{3*2}=ln(3x^2-6)^6 [/mm]

Ich habe das jetzt mal so angenommen und mit der Kettenregel abgeleitet:

[mm] y'(x)=6*ln(3x^2-6)^5*\bruch{1}{3x^2-6}*6x [/mm]

[mm] y'(x)=\bruch{36*ln(3x^2-6)^5}{3x^2-6}*x [/mm]

Jo, soweit mein Lösungsweg. Allerdings stimmt mein Ergebnis nicht mit der richtigen Lösung überein.
Wäre cool wenn mir jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Do 14.12.2006
Autor: Gonozal_IX

Hallo,

deine "Vereinfachung" geht so nicht, weil sich das Quadrat auf den ln bezieht und nicht auf das Argument im ln :-)

Ich würds so vereinfachen:

[mm]y(x)=ln^2(3x^2-6)^3[/mm]

[mm]= (ln(3x^2 - 6)^3)^2[/mm] (so ists gemeint)

[mm]=(3ln(3x^2-6))^2[/mm] (Logarithmussgesetz)

[mm]= (3 ln(3*(x^2-2)))^2 [/mm]

[mm]=(3 (ln(3) + ln(x^2-2)))^2 [/mm]

[mm]= 9*(ln3 + ln(x^2-2))^2 [/mm]

[mm]= 9*((ln3)^2 + 2ln(3) * ln(x^2-2) + (ln(x^2-2))^2) [/mm]

[mm]= 9*((ln3)^2 + 2ln(3) * ln[(x-\sqrt{2})(x+\sqrt{2})] + (ln[(x-\sqrt{2})(x+\sqrt{2})])^2) [/mm]

[mm]=9*((ln3)^2 + 2ln(3) * (ln(x-\sqrt{2}) + ln(x+\sqrt{2})) + (ln(x-\sqrt{2}) + ln(x+\sqrt{2}))^2) [/mm]

und so gehts weiter mit vereinfachen :-)

Schaffst du das nun alleine? :-)

Bezug
                
Bezug
Differenzieren einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 14.12.2006
Autor: McMuskel

Ui, das ist ja ein ganz schöner Klammerwald :-)
OK, die Vereinfachung konnt ich nachvollziehen.
Und wie darf ich das nun ableiten? Mit der Produkt- und Kettenregel?

Bezug
                        
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Do 14.12.2006
Autor: Gonozal_IX

ln(3) ist eine Konstante! Daran denken :-)
Aber sonst einfach Ableiten :-)

Bezug
                                
Bezug
Differenzieren einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Do 14.12.2006
Autor: McMuskel

Ah, gut, dass du das erwähnst. Das erspart mir eine weitere Frage :-) Danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]