www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Differenzieren, Integrieren
Differenzieren, Integrieren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren, Integrieren: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 23:58 Do 06.03.2008
Autor: Kreator

Aufgabe
-

Ich habe eine sehr allgemeine mathematische Frage: Warum ist das Differenzieren die Umkehrung des Integrieren. Ich weiss zwar bei beiden Operationen wie man sie herleitet (beim Differenzieren über den Differenzialquotienten und bei Integrieren über die Flächenberechnung unter einer Funktion über das Riemann-Integral (mit unendlich vielen "Säulen"). Warum ist aber die eine Operation genau die Umkehrung der anderen Operation? Kann mir das jemand kurz logisch erklähren? Oder gibts dazu eine gute Internetseite?

        
Bezug
Differenzieren, Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Fr 07.03.2008
Autor: Bastiane

Hallo Kreator!

> -
>  Ich habe eine sehr allgemeine mathematische Frage: Warum
> ist das Differenzieren die Umkehrung des Integrieren. Ich
> weiss zwar bei beiden Operationen wie man sie herleitet
> (beim Differenzieren über den Differenzialquotienten und
> bei Integrieren über die Flächenberechnung unter einer
> Funktion über das Riemann-Integral (mit unendlich vielen
> "Säulen"). Warum ist aber die eine Operation genau die
> Umkehrung der anderen Operation? Kann mir das jemand kurz
> logisch erklähren? Oder gibts dazu eine gute Internetseite?

Hehe, lustige Frage. Irgendwie weiß ich nicht, was du für eine Antwort erwartest - könntest du mir denn sagen, warum die Addition die Umkehrung der Subtraktion ist? Oder die Wurzel die Umkehrung des Quadrierens? Wenn ja, dann kann ich dir vllt auch eine Antwort auf deine Frage geben, aber so wüsste ich gerade zu keiner dieser Fragen eine Antwort...

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Differenzieren, Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:53 Fr 07.03.2008
Autor: leduart

Hallo Bastiane
Das Integral wird i.A. nicht als Umkehrung des Differenzierens definiert, sondern durch Riemannsummen, dann ist die Umkehrung schon ein Satz, der sogar fundamentalsatz ist, also mehr als die definition von Subtraktion als Umkehrung von Adition .
Gruss leduart

Bezug
        
Bezug
Differenzieren, Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Fr 07.03.2008
Autor: leduart

Hallo
Man kann aus der Darstellung des Integrals als GW von Summen herleiten, dass das Integral einer stetigen Funktion als Ableitung die Funktion hat.
(Es gibt aber auch nicht stetige Funktionen, die man integrieren kann, und da stimmt das nicht.
du kannst das unter "Fundamentalsatz" oder auch Hauptsatz der Analysis  in jedem Mathebuch der Analysis nachlesen.
z.Bsp auch in []wiki, hier
Gruss leduart

Bezug
                
Bezug
Differenzieren, Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Fr 07.03.2008
Autor: Kreator

Ok, vielen Dank, schau mir jetzt mal die Wiki-Seite zum Fudamentalsatz der Analysis an.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]