www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit im Nullp.
Differenzierbarkeit im Nullp. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit im Nullp.: Lösungshilfe
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 06.05.2014
Autor: FelixG.

Aufgabe
Sei g: R->R beliebig und [mm] f:R^2->R [/mm] defi niert durch f(x; y) = yg(x). Beweisen Sie, dass
f genau dann im Nullpunkt vollstandig di fferenzierbar ist, wenn g in x = 0 stetig ist.

Brauche Hilfe bei der Lösung der Aufgabe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Di 06.05.2014
Autor: fred97

Programm:

1. Zeige , dass f in (0,0) partiell differenzierbar ist und berechne gradf(0,0).

2. Es gilt, wegen (1): f ist in (0,0) vollständig differenzierbar  [mm] \gdw [/mm]

   $Q(s,t):= [mm] \bruch{f(s,t)-f(0,0)-gradf(0,0)*(s,t)}{||(s,t)||} \to [/mm] 0$ für (s,t) [mm] \to [/mm] (0,0)

3. Zeige also:

   Q(s,t) [mm] \to [/mm] 0 für (s,t) [mm] \to [/mm] (0,0)   [mm] \gdw [/mm] g ist in x=0 stetig.

FRED

Bezug
                
Bezug
Differenzierbarkeit im Nullp.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Di 06.05.2014
Autor: FelixG.

Ich habe jetzt bei 1) für partielle Differentiation 0 raus und für gradf auch 0.
Bei 2.) steht somit für (s,t)->(0,0) das Q(s,t) auch gegen 0 geht.
Ist das so richtig? Hoffe du verstehst was ich meine!!! :)

Bezug
                        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:08 Mi 07.05.2014
Autor: fred97


> Ich habe jetzt bei 1) für partielle Differentiation 0 raus


Hä ? Wa meinst Du damit ?


> und für gradf auch 0.

Das ist falsch !  Zeige: [mm] f_x(0,0)=0 [/mm] und [mm] f_y(0,0)=g(0). [/mm] Also ist

   gradf(0,0)=(0,g(0))


>  Bei 2.) steht somit für (s,t)->(0,0) das Q(s,t) auch
> gegen 0 geht.

Unsinn !


>  Ist das so richtig?

Nein.

> Hoffe du verstehst was ich meine!!! :)

Ich verstehe nicht was Du meinst.

FRED


Bezug
                                
Bezug
Differenzierbarkeit im Nullp.: Problem
Status: (Frage) beantwortet Status 
Datum: 17:50 Mi 07.05.2014
Autor: Illihide

Ich habe genau das selbe Problem.
Ich bin bisher soweit : gradf(0,0)= (0,g(0)) (wie du es bereits sagtest)
und hab das ganze in die Formel eingestzt:

Q(s,t) = [mm] \bruch{tg(s)+(0,tg(o))}{ \parallel (s,t) \parallel } [/mm]
Ist das soweit richtig oder ist das auch falsch? Wenn es richtig ist wie komme ich nun weiter weil es strebt ja alles gegen 0 ?1

LG Illi

Bezug
                                        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 07.05.2014
Autor: fred97


> Ich habe genau das selbe Problem.
>  Ich bin bisher soweit : gradf(0,0)= (0,g(0)) (wie du es
> bereits sagtest)
>  und hab das ganze in die Formel eingestzt:
>  
> Q(s,t) = [mm]\bruch{tg(s)+(0,tg(o))}{ \parallel (s,t) \parallel }[/mm]
>  
> Ist das soweit richtig oder ist das auch falsch?

falsch . $gradf(0,0)*(s,t)$  ist ein Skalarprodukt !!!

FRED

> Wenn es
> richtig ist wie komme ich nun weiter weil es strebt ja
> alles gegen 0 ?1
>  
> LG Illi


Bezug
                                                
Bezug
Differenzierbarkeit im Nullp.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:16 Mi 07.05.2014
Autor: Illihide

Selbst wenn ich gradf(0,0)* (s,t) so stehen lasse, dann ergibt sich für mich noch das selbe problem....
Ich weis nicht wie ich dort etwas vereinfachen kann oder etwas herauslesen könnte...

Bezug
                                                        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mi 07.05.2014
Autor: fred97


> Selbst wenn ich gradf(0,0)* (s,t) so stehen lasse, dann
> ergibt sich für mich noch das selbe problem....
>  Ich weis nicht wie ich dort etwas vereinfachen kann oder
> etwas herauslesen könnte...

Rechne nach:

  [mm] $Q(s,t)=\bruch{t}{\wurzel{s^2+t^2}}*(g(s)-g(0))$ [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]