www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit Funktionen
Differenzierbarkeit Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 27.01.2009
Autor: mathenully

Aufgabe
Sei f : R → R eine zweimal stetig differenzierbare Funktion mit f(0) = 0 und f′(0) = 0.
Zeigen Sie, dass es ein C ∈ R gibt mit
|f(x)| ≤ [mm] Cx^{2} [/mm] für jedes x ∈ [−1, 1] .

Hallo,

habe mich an dieser aufgabe ausgetobt und würde gerne noch ein feedback haben ob die aufgabe so richtig ist oder ob evtl. verbesserungen angebracht sind.
über ein feedback wäre ich sehr dankbar

meine lösung:

durch zweimalige anwendung des mittelwertsatzes:

f(x) - f(0) = f'(u) (x-0)                    (-|x| < u < |x|)

f'(u) - f'(0) = f''(v) (u-0)(x-0)          (-|u| < v < |u|)

wegen f(0) =0 und f'(0) =0

|f(x)| = |f''(v) u x|

sei x [mm] \in [/mm] (-1,1)

|f(x)| = |f''(v) u x| [mm] \le [/mm] |f''(v) |u| |x|
                              [mm] \le C|x|^{2} [/mm] = [mm] Cx^{2} [/mm]
mit C = max f'' (t)   t [mm] \in [/mm] (1,-1)

        
Bezug
Differenzierbarkeit Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 27.01.2009
Autor: fred97


> Sei f : R → R eine zweimal stetig differenzierbare
> Funktion mit f(0) = 0 und f′(0) = 0.
>  Zeigen Sie, dass es ein C ∈ R gibt mit
>  |f(x)| ≤ [mm]Cx^{2}[/mm] für jedes x ∈ [−1, 1] .
>  Hallo,
>  
> habe mich an dieser aufgabe ausgetobt und würde gerne noch
> ein feedback haben ob die aufgabe so richtig ist oder ob
> evtl. verbesserungen angebracht sind.
> über ein feedback wäre ich sehr dankbar
>  
> meine lösung:
>  
> durch zweimalige anwendung des mittelwertsatzes:
>  
> f(x) - f(0) = f'(u) (x-0)                    (-|x| < u <
> |x|)
>  
> f'(u) - f'(0) = f''(v) (u-0)(x-0)          (-|u| < v <
> |u|)


???????????????




>  
> wegen f(0) =0 und f'(0) =0
>  
> |f(x)| = |f''(v) u x|
>  
> sei x [mm]\in[/mm] (-1,1)
>  
> |f(x)| = |f''(v) u x| [mm]\le[/mm] |f''(v) |u| |x|
>                                [mm]\le C|x|^{2}[/mm] = [mm]Cx^{2}[/mm]
>  mit C = max f'' (t)   t [mm]\in[/mm] (1,-1)


C = max |f'' (t)|  !!  Die letzten 3 Zeilen sind etwas undurchsichtig !




Ich würde den Satz von Taylor benutzen

Zunächst gibt es ein c [mm] \ge [/mm] 0: |f''(x)| [mm] \le [/mm] c für x [mm] \in [/mm] [-1,1]


Sei x [mm] \in [/mm] [-1,1]

Nach Taylor: f(x) = f(0) +f'(0)x [mm] +\bruch{f''(u)}{2}x^2 [/mm] , wobei u zwischen 0 und x

Also |f(x)| = [mm] |\bruch{f''(u)}{2}|x^2 \le \bruch{c}{2}x^2 [/mm]

Setze  C = [mm] \bruch{c}{2} [/mm]


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]