www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Di 17.12.2013
Autor: Lila_1

Aufgabe
Sei [mm] f:\IR \to \IR [/mm] eine Funktion, für die |f(x)| [mm] \le x^2 [/mm] für alle x [mm] \in \IR [/mm] gilt. Ist f differenzierbar in 0?

Hallo,
meine Idee diese Aufgabe zulösen:
Fallunterscheidung:
1. f(x) = [mm] x^2 [/mm] ist in 0 differenzierbar, indem ich [mm] \limes_{x\rightarrow\ x_0} [/mm] = [mm] \bruch{f(x)-f(x_0)}{x-x_0} [/mm] bestimme.
2. f(x) < [mm] x^2 [/mm] hierfür fehlt mir eine Idee.

Ist meine Idee soweit richtig?
Falls nein, könnt ihr mir einen Tipp geben?


        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Di 17.12.2013
Autor: schachuzipus

Hallo,

> Sei [mm]f:\IR \to \IR[/mm] eine Funktion, für die |f(x)| [mm]\le x^2[/mm]
> für alle x [mm]\in \IR[/mm] gilt. Ist f differenzierbar in 0?
> Hallo,
> meine Idee diese Aufgabe zulösen:
> Fallunterscheidung:
> 1. f(x) = [mm]x^2[/mm] ist in 0 differenzierbar, indem ich
> [mm]\limes_{x\rightarrow\ x_0}[/mm] = [mm]\bruch{f(x)-f(x_0)}{x-x_0}[/mm]
> bestimme.
> 2. f(x) < [mm]x^2[/mm] hierfür fehlt mir eine Idee.

>

> Ist meine Idee soweit richtig?

Die Idee, den Differenzenquotienten aufzustellen, ist schonmal gut. Aber diese Fallunterscheidungen sind m.E. nicht so sehr zielführend ...

Da nur Differenzierbarkeit in 0 gefragt ist, ist [mm]x_0=0[/mm]

Also zu untersuchen [mm]\lim\limits_{x\to 0}\frac{f(x)-f(0)}{x}[/mm]

Schaue dir dazu den Betrag des DQ an, also [mm]\left|\frac{f(x)-f(0)}{x}\right|[/mm]

Noch ein Tipp: was ist denn [mm]f(0)[/mm]?

Gruß


schachuzipus

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Di 17.12.2013
Autor: Lila_1

also bekomme ich dann:
[mm] \limes_{x\rightarrow\ 0} =|\bruch{x^2}{x}| [/mm] = [mm] \limes_{x\rightarrow\ 0} [/mm] =|x|= 0
also ist es in 0 für [mm] |f(x)|\le x^2 [/mm] differenzierbar.

stimmt das so?
oder fehlt da noch was?

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 17.12.2013
Autor: schachuzipus

Hallo nochmal,

> also bekomme ich dann:
> [mm]\limes_{x\rightarrow\ 0} =|\bruch{x^2}{x}|[/mm] =
> [mm]\limes_{x\rightarrow\ 0}[/mm] =|x|= 0 [ok]
> also ist es in 0 für [mm]|f(x)|\le x^2[/mm] differenzierbar.

>

> stimmt das so?

Jo

> oder fehlt da noch was?

Nö, alles gut! Du könntest vllt. erwähnen, dass du ja eigentlich das Sandwichlemma benutzt hast ...


Gruß

schachuzipus

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Di 17.12.2013
Autor: fred97


> also bekomme ich dann:
>  [mm]\limes_{x\rightarrow\ 0} =|\bruch{x^2}{x}|[/mm] =
> [mm]\limes_{x\rightarrow\ 0}[/mm] =|x|= 0


>  also ist es in 0 für [mm]|f(x)|\le x^2[/mm] differenzierbar.

Dieser Satz gefällt mir nicht !

Du meinst sicher: " also ist f in x=0 differenzierbar"

FRED

>  
> stimmt das so?
>  oder fehlt da noch was?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]