www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Mo 07.02.2011
Autor: Lotl89

Aufgabe
Ist f stetig differenzierbar, so ist f' differnzierbar?

wenn f differenzierbar ist dann muss f' differenzierbar sein, da für jeden Wert für f eine steigung vorhanden ist.

exkurs: dann ist doch wenn f und g nicht differenzierbar sind f o g auch nicht differenzierbar ? stimmt das so?

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:03 Di 08.02.2011
Autor: Gonozal_IX

Huhu,

>  wenn f differenzierbar ist dann muss f' differenzierbar
> sein, da für jeden Wert für f eine steigung vorhanden
> ist.

also hier vergleichst du Äpfel mit Birnen.
Erstmal können "Werte" keine "Steigung" haben.
Zweitens sollst du was über die Differenzierbarkei von f' aussagen.
Was weißt du denn über f' nach Voraussetzung?
Impliziert das Differenzierbarkeit?
Wenn ja, warum. Wenn nein, warum nicht.

Tip: Betrachte $f(x) = [mm] \integral_{x_0}^x\, [/mm] |t| [mm] \, [/mm] dt$
Was sagt nun der Hauptsatz der Differential- und Integralrechnung dazu?

> exkurs: dann ist doch wenn f und g nicht differenzierbar
> sind f o g auch nicht differenzierbar ? stimmt das so?

Nein.

MFG,
Gono.

>  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]