www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 Sa 20.09.2008
Autor: Crispy

Hallo,

jeder weiß, dass eine Funktion im  Punkt [mm]x_0[/mm] differenzierbar heisst, wenn der folgende Grenzwert existiert.
[mm] \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} [/mm]
oder:
[mm] \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)-L(h)}{h} = 0[/mm]

Ich soll aber die Differenzierbarkeit mit dem [mm]\varepsilon - \delta[/mm]-Kriterium zeigen. Nur hab ich da keine Ahnung, wie ich das anstellen soll.

Hat vielleicht jemand eine Idee?

Vielen Dank und liebe Grüße,
Crispy

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Sa 20.09.2008
Autor: leduart

Hallo
Das [mm] \epsilon \delta [/mm] Kriterium ist nichts anderes, als den GW. zeigen.
Wie ist den bei dir lim definiert?
wenn $ [mm] \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} [/mm] $ existiert, heisst das doch, es gibt eine Zahl a mit
$ [mm] \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=a [/mm] $
und das heisst genauer, zu jedem [mm] \epsilon [/mm] >0 existiert ein [mm] \delta, [/mm] so dass aus [mm] |x-x_0|,\delta [/mm] folgt,
[mm] |\frac{f(x)-f(x_0)}{x-x_0}-a|<\epsilon. [/mm]
D.h. du musst auf die Def. von GW zurueck. und wirklich ein [mm] \delta(\epsilon,x_0) [/mm] finden
Gruss leduart

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Sa 20.09.2008
Autor: Crispy

Hallo,

vielen Dank.
Verstehe ich es richtig, dass dann das [mm]|x-x_0|[/mm] mein [mm]\delta[/mm] ist.

Viele Grüsse,
Crispy

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Sa 20.09.2008
Autor: angela.h.b.


>  Verstehe ich es richtig, dass dann das [mm]|x-x_0|[/mm] mein [mm]\delta[/mm]
> ist.

Hallo,

nein.

Dein [mm] \delta [/mm] ist ja nicht variabel.

Du gibtst ein beliebiges [mm] \varepsilon [/mm] vor. Passend zu diesem (und in der Regel abhängig von diesem und vom [mm] x_0) [/mm] mußt Du ein [mm] \delta [/mm] angeben, so daß für alle x, die nicht weiter als [mm] \\delta [/mm] von [mm] x_0 [/mm] entfernt sind [mm] (|x-x_0|<\delta) [/mm] die Funktionswerte nicht weiter als [mm] \varepsilon [/mm] auseinanderleigen.

Vielleicht gibtst Du mal Deine konkrete Funktion an und zeigst, wie weit Du kommst.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]