www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Fr 25.04.2008
Autor: Irmchen

Guten Abend!

Ich versuche gerade einen Beweis eines Lemmas zu verstehen, welches später für die Beweisführung der Kettenregel benutzt wird.
Leider habe ich bei einigen Stellen nicht den 100%igen Durchblick und hoffe, dass mir jemand bei meinen Fragen helfen kann!

LEMMA :

Sei U offen in [mm] \mathbb R^n [/mm], [mm] f: U \to \mathbb R^m [/mm] und [mm] x \in U [/mm].
Es gebe eine reelle m x n - Matrix A mit

[mm] \limes_{\xi \to 0} \bruch{1}{ \| \xi \| } ( f(x + \xi ) - f (x) - A \xi ) = 0 [/mm]

Dann ist f an der Stelle x differenzierbar mit Df(x) = A


( 1. Frage :
Ist mit dieser Differenzierbarkeit die (totale) Differenzierbarkeit gemeint? )

Beweis :

Wir müssen nur zeigen:  f partiell differenzierbar an der Stelle x mit Df(x) = A.

( Zwischenfrage :
   Warum genügt es nur die partielle Differenzierbarkeit das zu zeigen ? )

Dazu können wir o.B. d. A  annehmen, dass  m = 1, also [mm] A = ( a_1, ... , a_n ) [/mm] mit [mm] a_j \in \mathbb R [/mm]

( Zwischenfrage:
Warum genügt auch diese Annahme ? )

Betrachte die Funktionen [mm] [mm] F_i [/mm] (t) := f ( [mm] x_1, [/mm] ... , [mm] x_{i-1}, [/mm] t , [mm] x_{i+1}, [/mm] ... [mm] ,x_n [/mm] ).

Zu zeigen: [mm] F_i [/mm] ist an der Stelle [mm] x_i [/mm] differenzierbar mit  [mm] F_i ' ( x_i ) = a_i [/mm], also

[mm] \limes_{h \to 0 } \bruch{ F_i (x_i + h ) - F_i (x_i) }{h} = a_i [/mm]

Sei o.B.d.A. h > 0.
Sei [mm] e_1=(1, 0,0, ...., 0 ), e_2 =(0,1,0,0, ..., 0 ), ... , e_n =(0,0,0,. ..., 1) [/mm] die übliche BAsis vom [mm] \mathbb R^n [/mm].

[mm] \bruch{1}{h} ( F_i ( x_i +h ) - F_i (x_i ) ) [/mm]
[mm] = \bruch{1}{h} ( f(x_1, x_2, ..., x_{i-1}, x_i + h , x_{i +1 }, ..., x_n ) - f(x) ) [/mm]

  [mm] = \bruch{1}{h} ( f( x + h e_i ) - f(x) ) [/mm] (** )
[mm] = \bruch{1}{h} ( f( x + h e_i ) - f(x) - A \cdot (h e_i ) ) + A \cdot e_i [/mm]
[mm] = \bruch{1}{\|h e_i \| } ( f( x + h e_i ) - f(x) - A \cdot (h e_i ) ) + a_i \rightarrow a_i [/mm] für [mm] h \to 0 [/mm].

( Zwischenfrage :

Wie kommt man auf die Zeile (** ) ? )

Vielen Dank für die Hilfe!
Viele Grüße
Irmchen



        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Fr 25.04.2008
Autor: konvex

also bei dem (**) kann ich helfen:

[mm] f(x_1, x_2, [/mm] ..., [mm] x_{i-1}, x_i [/mm] + [mm] h,x_{i +1 }, ...,x_n) [/mm] , dh.


[mm] \vektor{x_{1} \\ x_{2} \\ ... \\ x_{n}} [/mm] + h [mm] \vektor{0 \\...\\0\\1\\0\\...\\ 0} [/mm] mit der 1 an der i-ten Stelle also ist das [mm] e_{i} [/mm]

und damit bekommst du doch [mm] f(x+he_i) [/mm]

Bezug
                
Bezug
Differenzierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:58 Sa 26.04.2008
Autor: Irmchen

Guten Tag!

Erstmal vielen Dank für dei Beantwortung der einen Frage!
Leider weiß ich immernoch nicht, warum es reicht nur die partielle Differnzierbarkeit zu zeigen :-(.
Hoffe, dass mir da noch jemand helfen kann!

Viele Grüße
Irmchen

Bezug
                        
Bezug
Differenzierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 So 04.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]