www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Differenzierbarkeit
Differenzierbarkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Do 15.03.2007
Autor: hooover

Aufgabe
Gegeben sie die Fkt. [mm] f:\IR\to\IR [/mm]

definiert durch

[mm] f(x)=\begin{cases} ae^{4x}, & \mbox{x} \ge \mbox{0} \\ -ln(-x+a)+b, & \mbox{x} < \mbox{0} \end{cases} [/mm]

Bestimme a>o und [mm] b\varepsilon\IR [/mm] so ,das f(x) in allen [mm] x\varepsilon\IR [/mm] differenzierbar ist.

Hallo Leute, ich finde hier leider so gut wie keine Ansatz. Weiß nicht wie man hier a oder b bestimmen sollte.

Könnte mir vorstellen das man hier erstmal ne Ableitung macht. Aber auch nur weil ich sonst nichts damit anfangen kann.

würde dann ungefähr so aussehen:

[mm] f'(x)=\begin{cases} 4ae^{4x}, & \mbox{x} \ge \mbox{0} \\ \bruch{1}{-x+a}, & \mbox{x} < \mbox{0} \end{cases} [/mm]

nun ja weiter könnte ich mir noch jetzt ne Grenzwert Untersuchung einmal von oben gegen Null und halt einmal von unten gegen Null vorstellen.

Kann mir jemand einen Tip geben wie man am besten in solchen Fällen vorgeht.

Vielen Dank Gruß hooover

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Do 15.03.2007
Autor: leduart

Hallo hoover
die funktion ist erstmal ueberall ausser bei 0 von allein stetig und diffbar. Also muss nun a und b so gewauelt werden dass die linke und rechte fkt bei 0 1. denselben Wert haben, und 2. denselben Wert der Ableitung.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]