www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Vorschlag und Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:25 Fr 05.10.2018
Autor: fred97

Aufgabe
Angeregt durch die Diskussion in https://matheraum.de/read?t=1092800 mache ich folgenden Vorschlag:

sei $ [mm] \emptyset \ne [/mm] D [mm] \subseteq \IR^n, [/mm] f:D [mm] \to \IR^m$ [/mm] eine Funktion, $p [mm] \in [/mm] D$ und $p$ sei ein Häufungspunkt von $D$.

Wir nennen $f$ semi-differenzierbar (kurz sdb) in $p$, wenn es eine reelle $m [mm] \times [/mm] n$ - Martix $T$ gibt mit

(*)  [mm] $\lim_{x \to p, x \in D \setminus \{p\}}\frac{f(x)-f(p)-T(x-p)}{||x-p||}=0$. [/mm]

Hierbei bezeichene $|| [mm] \cdot||$ [/mm] irgendeine Norm auf [mm] \IR^n [/mm] (welche ist völlig egal, denn alle Normen auf [mm] \IR^n [/mm] sind äquivalent).

Im Folgenden sei $|| [mm] \cdot||$ [/mm] die euklidische Norm.

Bemerkungen:

1. ist $n=m=1$, so gilt:

$f$ ist differenzierbar in $p$ [mm] \gdw [/mm] $f$ ist sdb in $p$. In diesem Fall ist $T=f'(p)$.

2. ist $D$ offen, so gilt:

$f$ ist differenzierbar in $p$ [mm] \gdw [/mm] $f$ ist sdb in $p$. In diesem Fall ist $T=f'(p)$.

3. I.a. ist die Matrix $T$ in obiger Def. (*) nicht eindeutig bestimmt, wie folgendes Beispiel zeigt:

Es sei [mm] $D=\{(x,x): x \in \IR\}, [/mm] f(x,y):=0$ für $(x,y) [mm] \in [/mm] D$ und $p=(0,0)$. Für $T=(a,b)$ haben wir (mit $(x,y) [mm] \in [/mm] D$)

[mm] $\frac{f(x,y)-f(p)-T((x,y)-p)}{||(x,y)-p||}=-\frac{x}{\sqrt{2}|x|}(a+b)$. [/mm]

Nun sieht man: jedes $T=(a,b)$ mit $a+b=0$ erfüllt (*).


Zur Aufgabe: seien [mm] $u_1,...,u_n$ [/mm] linear unabhängige Vektoren im [mm] \IR^n, [/mm] sei $p$ Häufungspunkt jeder der Mengen $D [mm] \cap \{p+tu_i: t \in \IR\}, \quad [/mm] i=1,...,n$ und sei $f$ sdb in $p$.

Dann ist die Matrix $T$ in (*) eindeutig bestimmt.


Ich bitte jemanden aus dem Kreis der Moderatoren, diese Aufgabe als Übungsaufgabe zu kennzeichnen.

Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]