Differenzierbare Mannigfaltigk < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:10 Fr 18.05.2012 | Autor: | icarus89 |
Aufgabe | Def. Eine n-dimensionale differenzierbare Mannigfaltigkeit ist ein Hausdorffraum M, der das zweite Abzählbarkeitsaxiom erfüllt, mit einem differenzierbaren n-Atlas. |
Hallo,
es geht darum zu zeigen, dass eine diff'bare Mannigfaltigkeit (in der Def. oben) parakompakt ist, was anschaulich klar ist, da das ja nicht anderes ist, als ein glatt gekrümmter [mm] \IR^{n}. [/mm] In einigen Definition einer diffbaren Mgfkt wird Parakompaktheit auch gleich gefordert, woanders wird Metrisierbarkeit gefordert und aus Metrisierbarkeit folgt dann Parakompaktheit. Aber das sollte auch von der Definition ausgehend gezeigt werden können. Jede differenzierbare Mannigfaltigkeit besitzt wohl eine sogenannte Riemannsche Metrik, doch hab ich von der Theorie der Riemannschen Mannigfaltigkeiten keine Ahnung und auch nicht die Zeit die ganze Theorie dazu zu erarbeiten. Die Parakompaktheit ist nur eine Tatsache, die ich für einen Vortrag brauche und das sollte doch irgendwie auch einfacher gehen.
Sei [mm] \mathcal{U} [/mm] eine Überdeckung von M und sei [mm] \mathcal{A} [/mm] ein Atlas auf M. Für eine Karte $ [mm] \varphi:U\to [/mm] V $ ist [mm] \{\varphi(U\cap O)\}_{O\in\mathcal{U}} [/mm] eine offene Überdeckung von V. Wegen Parakompaktheit existiert eine lokal endliche Verfeinerung [mm] \mathcal{U}_{\varphi}
[/mm]
Dann ist [mm] \bigcup_{\varphi\in \mathcal{A}} \mathcal{U}_{\varphi} [/mm] eine offene Überdeckung von M. Aber selbst wenn [mm] \mathcal{A} [/mm] abzählbar ist (das kann er doch sein, wegen dem 2. AA, oder?) ist das noch nicht lokal endlich...Kann man das jetzt weiter verwurschteln oder ist mein Ansatz falsch?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:58 Fr 18.05.2012 | Autor: | SEcki |
> Kann
> man das jetzt weiter verwurschteln oder ist mein Ansatz
> falsch?
Ist schon ok, blos reicht das nicht alleine - du brauchst noch, dass jedes x eine kompakte Umgebung hat (wg. lokal euklidisch). Dann kannst du induktiv den Raum durch Kompakta ausschöpfen, die jeweils mit endlich vielen Umgebungen (ggf. verkleineren) überdecken und erhälst induktiv, was du brauchst, siehe das erste Kapitel hier. Reicht dir das?
SEcki
|
|
|
|