www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbare Funktion
Differenzierbare Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbare Funktion: AUfgabe
Status: (Frage) beantwortet Status 
Datum: 12:51 So 29.09.2013
Autor: ellegance88

Aufgabe
Man Zeige, dass die Gleichung y * [mm] e^y^-^x [/mm] = 1 eine differenzierbare Funktion y=f(x), f:IR ---> IR beschreibt und bestimme f '(x) als Funktion von x und y.

Hallo, wie gehe ich an diese Aufgabe ran?
Ich vermute, es hat etwas mit dem Satz von der implizierten Funktion zutun. Aber ich kann es irgendwie nicht anwenden.
Ich würde als erstes die 1 rüber bringen. dann hätte ich
y *  [mm] e^y^-^x-1=0 [/mm] und danach wüsste ich nicht mehr weiter.

LG

        
Bezug
Differenzierbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 So 29.09.2013
Autor: MathePower

Hallo ellegance88,

> Man Zeige, dass die Gleichung y * [mm]e^y^-^x[/mm] = 1 eine
> differenzierbare Funktion y=f(x), f:IR ---> IR beschreibt
> und bestimme f '(x) als Funktion von x und y.
>  Hallo, wie gehe ich an diese Aufgabe ran?
>  Ich vermute, es hat etwas mit dem Satz von der
> implizierten Funktion zutun. Aber ich kann es irgendwie
> nicht anwenden.
>  Ich würde als erstes die 1 rüber bringen. dann hätte
> ich
>  y *  [mm]e^y^-^x-1=0[/mm] und danach wüsste ich nicht mehr
> weiter.
>  


Wenn Du  die Ableitung der differnzierbaren Funktion berechnen willst,
musst Du y=f(x) einsetzen und dann nach x ableiten.

Voraussetzung ist aber, daß die Funktion

  [mm]F\left(x,y\right)=y*e^{y-x}-1[/mm]

stetig differenzierbar ist.


> LG


Gruss
MathePower

Bezug
        
Bezug
Differenzierbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mi 09.10.2013
Autor: fred97

Setze

  

  $ [mm] F\left(x,y\right):=y\cdot{}e^{y-x}-1 [/mm] $

zeige nun, dass F(1,1)=0 und [mm] F_y(1,1) \ne [/mm] 0 ist. Der Satz über implizit def. Funktionen besagt nun:

  es gibt eine Umgebung U von x=1 und genau eine stetig differenzierbare Funktion f:U [mm] \to \IR [/mm] mit:

     f(1)=1 und F(x,f(x))=0 für alle x [mm] \in [/mm] U.

Also:

      [mm] f(x)*e^{f(x)-x}=1 [/mm]   für alle x [mm] \in [/mm] U.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]