www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Differenzialrechnung
Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialrechnung: Kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 16.11.2004
Autor: KristinaW

Hallo!
Wie berechnet man die Nullstellen und das Extrema von der Funktion f(x)=2*(sin(4x+12)) ?
Hab mir bei den Nullstellen gedacht, dass man sin (die innere Funktion) auf Null bringen muss. Somit würde -3 eine Nullstelle sein. Komme aber nicht wirklich weiter in der Rechnung. Brauche dringend mal eine Erklärung... Danke
lg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Differenzialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Di 16.11.2004
Autor: Shaguar

Moin Kristina,

du liegst vollkommen richtig mit der Nullstelle -3. Ich zeig dir mal eben den mathematisch korrekten Weg dorthin.

       [m]2sin(4x+12)=0[/m]
[m]\gdw sin(4x+12)=0[/m] |Umkehrfunktion einsetzen
[m]\gdw 4x+12=arcsin(0)[/m] |ausrechnen  
[m]\gdw 4x+12=0[/m]
[m]\gdw x=-3[/m]


So nun zu dem Extremum (Extrema ist plural):

Hierfür brauchen wir die 1. Ableitung:

[m]f^{,}(x)=8cos(4x+12)[/m]

die wird null gesetzt:

[m]\gdw 8cos(4x+12)=0[/m]
[m]\gdw cos(4x+12)=0[/m]
[m]\gdw 4x+12=arccos(0)[/m]
[m]\gdw 4x+12=\bruch{\pi}{2}[/m]
[m]\gdw x=\bruch{\pi}{8}-3[/m]

Damit haben wir ein Etremum an der Stelle [mm] (\bruch{\pi}{8}-3;2) [/mm] mit der 2. Ableitung kriegt man noch raus, dass es ein Hochpunkt ist.

Ich hoffe, dass es ausführlich genug ist ansonsten frag nochmal nach. Ich glaube dir hat keine Erklärung gefehlt sondern der "Trick" mit der Umkehrfunktion.

MFG Shaguar

Bezug
                
Bezug
Differenzialrechnung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Di 16.11.2004
Autor: KristinaW

Danke, hast mir echt gut weitergeholfen.
Manche "Tricks" müssen einem aber auch gesagt werden, sonst verzweifelt man...
lg Kristina

Bezug
                
Bezug
Differenzialrechnung: Korrekturanmerkungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Di 16.11.2004
Autor: Marc

Hallo Shaguare, hallo Kristina!

Den "Trick" mit der Umkehrfunktion finde ich nicht so gut, da er einen die weiteren Nullstellen vergessen läßt.

> du liegst vollkommen richtig mit der Nullstelle -3. Ich
> zeig dir mal eben den mathematisch korrekten Weg dorthin.
>  
> [m]2sin(4x+12)=0[/m]
>  [m]\gdw sin(4x+12)=0[/m] |Umkehrfunktion einsetzen
>  [m]\gdw 4x+12=arcsin(0)[/m] |ausrechnen  

An dieser Stelle müßte [mm] $\Rightarrow$ [/mm] stehen, weil diese Gleichung nur eine Möglichkeit ist, die vorherige Gleichung zu erfüllen.

> [m]\gdw 4x+12=0[/m]
>  [m]\gdw x=-3[/m]

Ich würde stattdessen so rechnen:

[mm] $2*\sin(4x+12)=0$ [/mm]
[mm] $\gdw$ $\sin(4x+12)=0$ [/mm]

Nun argumentiere ich so: Die Nullstellen von [mm] $\sin$ [/mm] sind bekannt, sie liegen bei [mm] $k*\pi$, $k\in\IZ$. [/mm]

Also muß gelten:

[mm] $\gdw$ $4x_k+12=k*\pi$, $k\in\IZ$ [/mm]
[mm] $\gdw$ $4x_k=k*\pi-12$, $k\in\IZ$ [/mm]
[mm] $\gdw$ $x_k=\bruch{k*\pi-12}{4}$, $k\in\IZ$ [/mm]
[mm] $\gdw$ $x_k=\bruch{k}{4}*\pi-3$, $k\in\IZ$ [/mm]

Die Nullstellen von [mm] $2*\sin(4x+12)$ [/mm] liegen also bei [mm] $x_k=\bruch{k}{4}*\pi-3$, $k\in\IZ$ [/mm]

(wie man sieht, ist [mm] $x_0=-3$ [/mm] nur eine der unendlich vielen Nullstellen).

> So nun zu dem Extremum (Extrema ist plural):
>  
> Hierfür brauchen wir die 1. Ableitung:
>  
> [m]f^{,}(x)=8cos(4x+12)[/m]
>  
> die wird null gesetzt:
>  
> [m]\gdw 8cos(4x+12)=0[/m]
>  [m]\gdw cos(4x+12)=0[/m]
>  [m]\gdw 4x+12=arccos(0)[/m]

Hier das gleiche wie oben, nur muß man hier natürlich benutzen, dass die Nullstellen von [mm] $\cos$ [/mm] bei [mm] $k*\pi+\bruch{\pi}{2}$ [/mm] liegen.

Naja, insgesamt also bis auf den [mm] $\gdw$ [/mm] kein wirklicher Fehler in der Rechnung von Shaguar.

Viele Grüße,
Marc

Bezug
                        
Bezug
Differenzialrechnung: Definitionsbereich!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Di 16.11.2004
Autor: Shaguar

Moin,
Das ist mir natürlich bewußt bin es aber noch aus der Schule gewohnt, die Vielfachen wegzulassen. Außerdem wurde hier nix über den Definitionsbereich von f(x) gesagt also kann meine Antwort genauso richtig sein.

Gruß Shaguar


Bezug
                                
Bezug
Differenzialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Di 16.11.2004
Autor: Marc

Hallo Shaguar!

>  Das ist mir natürlich bewußt bin es aber noch aus der
> Schule gewohnt, die Vielfachen wegzulassen. Außerdem wurde
> hier nix über den Definitionsbereich von f(x) gesagt also
> kann meine Antwort genauso richtig sein.

Ja, sie könnte natürlich richtig sein.
Da aber wichtige Informationen in der Aufgabenstellung fehlen (nämlich der Definitionsbereich) sollte man schon annehmen, dass hier alle Nullstellen gefragt sind -- wenigstens die Pluralbildung in der Frage deutet ja auch auf mehr als eine gefragte Nullstelle hin.

Deine Antwort ist ja auch nicht falsch, ich wollte nur absehbaren neuen Problemen von Kristina vorgreifen, bevor sie sich deinen Weg aneignet.

Viele Grüße,
Marc

Bezug
                                        
Bezug
Differenzialrechnung: Mittleilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Di 16.11.2004
Autor: KristinaW

Hallo ihr zwei!
Tut mir leid, dass wegen der Definitionsmenge eine kleine Unstimmigkeit zwischen euch entstanden ist. Leider habe ich keine genaue Def.menge vorgegeben. Die Fragestellung war die original Fragestellung. Danke aber trotzdem, dass ihr euch Gedanken gemacht habt und mich schonmal vor evtl. Fehlern bzw. dass ich nicht alle Nullstellen habe, gewarnt habt. Wenn ich die besprochene Aufgabe habe kann ich mich ja nochmal melden.
Liebe grüße, Kristina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]