www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Differenzenquotient
Differenzenquotient < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzenquotient: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:24 Do 10.03.2011
Autor: labelleamour

Aufgabe
Das hier ist ein im Buch angegebenes Beispiel, welches ich noch nicht ganz verstehe.

[mm] \bruch{f(7) - f(2)}{5} [/mm] = [mm] \bruch{6,5 - 4}{5}= [/mm] 0,5

Wie kommt man auf die 6,5 nach dem 1. Gleichheitszeichen?
Mein Problem ist, dass aus dem vorigen Beispiel hervorgeht man solle nach dem 1. Gleichheitszeichen die Werte die im Zähler stehen zum Quadrat nehmen, mit 2 würde das auch passen ,aber was ist mit 6,5?


Liebe Grüße

        
Bezug
Differenzenquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Do 10.03.2011
Autor: schachuzipus

Hallo,

wie ist f definiert?

Gruß

schachuzipus

Bezug
                
Bezug
Differenzenquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Do 10.03.2011
Autor: labelleamour

Zu f steht dort nur Funktion f im Intervall [2;7]

Bezug
        
Bezug
Differenzenquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Do 10.03.2011
Autor: angela.h.b.


> Das hier ist ein im Buch angegebenes Beispiel, welches ich
> noch nicht ganz verstehe.

Hallo,

poste das komplette Beispiel inkl. eines eventuellen einführenden Textes und/oder der Skizze bzw. ihrer Beschreibung.

Gruß v. Angela

>  
> [mm]\bruch{f(7) - f(2)}{5}[/mm] = [mm]\bruch{6,5 - 4}{5}=[/mm] 0,5
>  Wie kommt man auf die 6,5 nach dem 1. Gleichheitszeichen?
>  Mein Problem ist, dass aus dem vorigen Beispiel hervorgeht
> man solle nach dem 1. Gleichheitszeichen die Werte die im
> Zähler stehen zum Quadrat nehmen, mit 2 würde das auch
> passen ,aber was ist mit 6,5?
>  
>
> Liebe Grüße


Bezug
                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Do 10.03.2011
Autor: labelleamour

Aufgabe
Beispiel 3:
Bestimmung des Differenzquotienten mithilfe des Graphen

Bestimme geometrisch den Differenzquotienten der Funktion f im Intervall
[2;7] deren Graph in Fig 1 dargestellt ist
Lösung: Man zeichnet eine Gerade g durch die beiden Punkte P(2|f(2)) und Q (7|f(7)). Die Steigerung von g entspricht dem Differenzquotienten in Intervall [2;7]

f(7) - f(2)     6,5 -  4    
------------ =  --------  = 0,5
    5                   5

Wie kann ich die Skizze reinkopieren ?

Bezug
                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Do 10.03.2011
Autor: abakus


> Beispiel 3:
>  Bestimmung des Differenzquotienten mithilfe des Graphen
>  
> Bestimme geometrisch den Differenzquotienten der Funktion f
> im Intervall
>  [2;7] deren Graph in Fig 1 dargestellt ist
>  Lösung: Man zeichnet eine Gerade g durch die beiden
> Punkte P(2|f(2)) und Q (7|f(7)). Die Steigerung von g
> entspricht dem Differenzquotienten in Intervall [2;7]
>  
> f(7) - f(2)     6,5 -  4    
> ------------ =  --------  = 0,5
>      5                   5
>  Wie kann ich die Skizze reinkopieren ?

Lass mich mal raten: in der Skizze sieht man ein Funktion, die an der Stelle x=7 den Funktionswert 6,5 an an der Stelle x=2 den Funktionswert 4 besitzt?
Damit wäre nämlich deine Frage beantwortet, woher der Wert 6,5 kommt.
Gruß Abakus



Bezug
                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Do 10.03.2011
Autor: labelleamour

achso liest man das einfach ab?

Bezug
                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Do 10.03.2011
Autor: leduart

Hallo
Ja, wenn die fkt f nicht durch ne gleichung, sondern durch einen Graph gegeben ist.
Gruss leduart


Bezug
                                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Do 10.03.2011
Autor: labelleamour

Aufgabe
gut ich habe da noch eine andere aufgabe:
Zeichne den Graphen der funktion f ; f(x)= x² und bestimme den differenzenquotienten geometrisch im angegebenen intervall. Überprüfe dein ergebnis rechnerisch.

b) I =[1;10]

ich hab jetzt ne normalparabel gezeichnet und      [mm] \bruch{f(10)-f(1)}{9} [/mm] aufgestellt, kann ich jetzt einfach 1 und 10 einzeichnen und ne gerade draus machen?

Bezug
                                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Do 10.03.2011
Autor: leduart

Hallo
du zeichnest die 2 Punkte (1,f(1)) und (10,(f(10)) verbindest sie durch eine gerade und liest ihre Steigung aus der zeichnung ab. dann auch noch rechnen!
sollst du wirklich den Differenzenquotienten über das gesamte Intervall oder steht davor noch was anderes?
Gruss leduart


Bezug
                                                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 10.03.2011
Autor: labelleamour

dort steht nur im angegebenen intervall. aber f (10) ist 100 dann muss das system ja bis 100 gehen?

Bezug
                                                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 10.03.2011
Autor: angela.h.b.


>  dort steht nur im angegebenen intervall. aber f (10) ist
> 100 dann muss das system ja bis 100 gehen?

Hallo,

ja, wenn Du es zeichnerisch lösen sollst, muß das so sein.

Du kannst ja auf den beiden Achsen unterschiedliche Maßstäbe wählen, mußt dann aber beim Bestimmen der Steigung aufpassen und jeweils die Einheiten verwenden, nicht etwa "Kästchen" oder "cm".

Gruß v. Angela


Bezug
                                                                                
Bezug
Differenzenquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Do 10.03.2011
Autor: labelleamour

gut, danke an alle ich werds mal probieren

lg sarah

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]