www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differenzengleichungen
Differenzengleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichungen: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:52 So 15.01.2006
Autor: sa_ho

Aufgabe
Es ist durch das Lösungsverfahren für allg. lineare Differenzengleichungen zu zeigen, dass aus der impliziten die explizite Tilgungsgleichung entsteht!
implizite Gleichung:
[mm] D_{n+1} [/mm] = [mm] D_{n} [/mm] * q – R
explizite Gleichung
[mm] D_{0} [/mm] * [mm] q^{n} [/mm] – R * [mm] q^{n} [/mm] – 1 / q - 1 = [mm] D_{n} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

es geht wie gesagt darum zu zeigen, dass aus der 1. die 2. Gleichung wird durch Anwendung des Lösungsverfahrens für allg. lin. Differenzengleichungen.

Das mir dazu bekannte Lösungsverfahren meint:

1) für die homogene Form der Formel (also hier ohne - R ?) den Ansatz   [mm] y_{n} [/mm] = [mm] r^{n} [/mm] verwenden und nach r auflösen.
2.) dann EINE (partikuläre) Lösung finden mit dem Ansatz [mm] y_{n} [/mm] = k --> nach ka auflösen
3.) Teillösungen aus Schritt 1 und 2 zu einer Funktionsgleichung zusammenführen und die Konstanten bestimmen.

Wenn ich dazu Beispielaufgaben mit Zahlenwerten bearbeiten musste, konnte ich diese bisher meist lösen. Mir fällt dies allerdings in diesem Beispiel schwer, da ich bereits im 1. Schritt r = q rausbekomme und damit nichts anfangen kann.
Vielleicht hat jemand einen Tipp :-) ?
Viele Grüße, S.


        
Bezug
Differenzengleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 19.01.2006
Autor: matux

Hallo sa_ho,

[willkommenmr] !!


Wir bedauern, dass Deine Frage nicht in der von dir eingestellten Fälligkeitszeit (72 h) beantwortet wurde.

Der wahrscheinlichste Grund dafür ist, dass ganz einfach niemand, der dir hätte helfen können, im Fälligkeitszeitraum online war. Bitte bedenke, dass jede Hilfe hier freiwillig und ehrenamtlich gegeben wird.

Wie angekündigt gehen wir nun davon aus, dass du an einer Antwort nicht mehr interessiert bist. Die Frage taucht deswegen nicht mehr in der Liste der offenen Fragen, sondern nur noch in der Liste der Fragen für Interessierte auf.
Falls du weiterhin an einer Antwort interessiert bist, stelle einfach eine weitere Frage in dieser Diskussion.

Wir wünschen dir beim nächsten Mal mehr Erfolg! [kleeblatt]

Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]