www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Differenzengleichung
Differenzengleichung < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:03 So 09.05.2010
Autor: hilfebraucher

Aufgabe
Stellen Sie ausgehend von folgender Differentialgleichung, die Differenzengleichung in rekursiver Form auf (Ausgangsgröße [mm] x(kT_0) [/mm] in Abhängigkeit von der Eingangsgröße [mm] F(kT_0) [/mm] und von den vergangenen Werten [mm] x((k-1)T_0) [/mm] und [mm] x((k-2)T_0): [/mm]

m*x''(t) = F(t)-d*x'(t) -k*x(t)
mit F(t) = c*cos(wt)

Die Konstanten m,w,d,k,c seinen alle gegeben. Leider hab ich grad gar keine Idee, wie ich überhaupt vorgehen soll. Kann mir da jemand mal helfen?

Im Skript habe ich noch folgendes gefunden:
"Für eine DGL 2.Ordnung ergibt sich (mit deltaT = [mm] T_0): [/mm]
[mm] a_2*x''(t)+a_1*x'(t) [/mm] = [mm] a_0*y(t) [/mm]
-->
[mm] x(k-2)-x(k-1)*(2a_2 [/mm] + [mm] a_1 T_0)/(a_2)+x(k)*(a_2+a_1*T_0)/(a_2) [/mm] = [mm] (T_0^2 a_0)/(a_2) [/mm] * y(k)

Ich habs mal versucht analog zu machen:

[mm] x(k-2)-x(k-1)(2m+dT_0)/m+x(k)(m+dT_0)/(m)+x(k)k/m [/mm] = [mm] (T_0^2 [/mm] )/(m) * F(k)
Allerdings verstehe ich garnet, wie man auf die Formel aus dem Skript kommt...

Vielen Dank schonmal

        
Bezug
Differenzengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 11.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]