www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Differenz einer Folge
Differenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 22.02.2012
Autor: LittleStudi

Aufgabe
Für eine Folge [mm] (f_k)_{k=0}^\infty [/mm] gelte [mm] f_0 [/mm] = 5 und [mm] \Delta f_{k} [/mm] = 11.

Berechnen Sie die Folge [mm] (f_k)_{k=0}^\infty. [/mm]

Hallo :)

[mm] \Delta b_n [/mm] ist def. durch:

[mm] \Delta b_n [/mm] = [mm] b_{n+1} [/mm] - [mm] b_n [/mm]

kann ich dann [mm] f_0 [/mm] als meinen Startwert bezeichnen?

Denn dann würde ich das ganz so lösen:

Also wenn [mm] \Delta b_n [/mm] = 11 ist dann heißt das ja, dass die Funktion monoton steigend ist und immer um 11 Schritte zunimmt.

denn: [mm] f_{n+1} [/mm] - [mm] f_n [/mm] = 11 => [mm] f_1 [/mm] - [mm] f_0 [/mm] = 11 => [mm] f_1 [/mm] = 16;

[mm] f_2 [/mm] = 27... usw.

somit wäre mein [mm] f_k [/mm] = 5 + 11k ?!

        
Bezug
Differenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Mi 22.02.2012
Autor: MathePower

Hallo LittleStudi,

> Für eine Folge [mm](f_k)_{k=0}^\infty[/mm] gelte [mm]f_0[/mm] = 5 und [mm]\Delta f_{k}[/mm]
> = 11.
>  
> Berechnen Sie die Folge [mm](f_k)_{k=0}^\infty.[/mm]
>  Hallo :)
>  
> [mm]\Delta b_n[/mm] ist def. durch:
>  
> [mm]\Delta b_n[/mm] = [mm]b_{n+1}[/mm] - [mm]b_n[/mm]
>  
> kann ich dann [mm]f_0[/mm] als meinen Startwert bezeichnen?
>  
> Denn dann würde ich das ganz so lösen:
>  
> Also wenn [mm]\Delta b_n[/mm] = 11 ist dann heißt das ja, dass die
> Funktion monoton steigend ist und immer um 11 Schritte
> zunimmt.
>  
> denn: [mm]f_{n+1}[/mm] - [mm]f_n[/mm] = 11 => [mm]f_1[/mm] - [mm]f_0[/mm] = 11 => [mm]f_1[/mm] = 16;
>  
> [mm]f_2[/mm] = 27... usw.
>  
> somit wäre mein [mm]f_k[/mm] = 5 + 11k ?!  


Das ist richtig. [ok]


Gruss
MathePower

Bezug
                
Bezug
Differenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Mi 22.02.2012
Autor: LittleStudi

Super :)

Dankeschön !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]