www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differentiation v. 2 Variablen
Differentiation v. 2 Variablen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation v. 2 Variablen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:23 Fr 24.06.2005
Autor: Ursus

Hi Leute!
Ich hab mal wieder ein Problem bei folgendem Beispiel:

Man beweise folgende Identität mit Hilfe des Eindeutigkeitssatzes der Differentialrechnung:

arctan(x) + arctan(y) = arctan ( [mm] \bruch{x+y}{1-xy} [/mm] )

Mein Ansatz:
Die Eindeutigkeit der Differentialrechnung bedeutet, wenn
f' = g'  [mm] \Rightarrow [/mm] f = g + c

Ich wollte also zeigen,dass die beiden Ableitungen gleich sind.
Sei
f(x,y)= arctan(x) + arctan(y)
g(x,y) = arctan ( [mm] \bruch{x+y}{1-xy} [/mm] )    

zu zeigen: g'=f'

Das Differenzieren wäre für mich kein Problem, aber ich weiß nicht nach welchen Variablen ich ableiten soll.

Bei mir kommt nämlich heraus:

[mm] \bruch{df}{dx} \not= \bruch{dg}{dx} [/mm]

[mm] \bruch{df}{dy} \not= \bruch{dg}{dy} [/mm]

Also meine Frage an euch:
Nach welchen Variablen muss man hier differenzieren, damit man die Gleichheit zeigen kann??

Ich habe diese Frage auf keinen anderen Foren gestellt.

Vielen Dank im Voraus!
Lg URSUS




        
Bezug
Differentiation v. 2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Fr 24.06.2005
Autor: angela.h.b.

Hallo Ursus,

das kann ja gar nicht sein.

z.B. ist arctan [mm] \wurzel{3} [/mm] + arctan [mm] \wurzel{3}=2/3 \pi, [/mm]
es ist aber der arctan  nach oben durch  [mm] \pi/2 [/mm] beschränkt!

Von daher: kein Wunder, daß Du es nicht zeigen kannst. Das Gegenteil wäre bedenklicher...

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]