www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differentiation: Produktregel
Differentiation: Produktregel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation: Produktregel: Rückfrage zu Beweis
Status: (Frage) beantwortet Status 
Datum: 12:38 Fr 12.06.2009
Autor: GreatBritain

Aufgabe
Satz:
Sind $f,g : U [mm] \rightarrow \mathbb{R}^n$ [/mm] und $h : U [mm] \rightarrow \mathbb{R}$ [/mm] bei $x [mm] \in [/mm] U [mm] \re \mathbb{R}^m$ [/mm] differenzierbar.
Dann gilt die Produktregel
$D(h [mm] \cdot [/mm] f)(x) = f(x)Dh(x) + h(x)Df(x)$

hi
Dieser Satz samt Beweis ist aus unserem Skript. Allerdings verstehe ich beim Beweis 2 Dinge nicht. Hier also erstmal der Beweis laut Skript:

$O(y)$ bzw $o(y)$ sind Landau Symbole

Differnzierbarkeit von f und h ist vorausgesetzt, es gilt also:
$f(x+y) - f(x) = Df(x)y + o(y)$
$h(x+y) - h(x) = Dh(x)y + o(y)$

$ h(x+y) f(x+y) - h(x) f(x) = $
$ = f(x+y) (h(x+y) - h(x)) + h(x) (f(x+y) - f(x)) = $
$ = (f(x) + Df(x)y + o(y)) (Dh(x)y + o(y)) + h(x)(Df(x)y + o(y)) = $
$ =(f(x) + [mm] \textcolor{red}{O(y)}) [/mm] (Dh(x)y + o(y)) + h(x) (Df(x)y + o(y))= $
$ = f(x)Dh(x)y + h(x)Df(x)y + o(y) = $
$ =[f(x)Dh(x) + [mm] h(x)Df(x)]\textcolor{red}{y} [/mm] + o(y) $

Mein Fragen beziehen sich auf die rot markierten Ausdrücke.

1. Warum darf ich $Df(x)y + o(y)$ einfach als $O(y)$ schreiben?? Diese Landau-Symbole sind mir immer noch nicht so ganz geheuer...
und sehe ich das richtig: in der nächsten Zeile wurden dann alle $O(y)$ und $o(y)$ Ausdrücke zusammengefasst als $o(y)$? Das hätte für mich zumindest Logik ;-)

2. Was ist mit dem $y$ in der letzten Zeile passiert? Denn in meiner Formel aus dem Satz habe ich kein $y$ mehr. Dass das $o(y)$ als Restglied wegfällt ist mir klar - warum fällt das $y$ weg?

Wäre super wenn mir das jemand erklären könnte :-)

Gruß GB

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Differentiation: Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Sa 13.06.2009
Autor: rainerS

Hallo!

> Satz:
>  Sind [mm]f,g : U \rightarrow \mathbb{R}^n[/mm] und [mm]h : U \rightarrow \mathbb{R}[/mm]
> bei [mm]x \in U \re \mathbb{R}^m[/mm] differenzierbar.
>  Dann gilt die Produktregel
>  [mm]D(h \cdot f)(x) = f(x)Dh(x) + h(x)Df(x)[/mm]
>  hi
>  Dieser Satz samt Beweis ist aus unserem Skript. Allerdings
> verstehe ich beim Beweis 2 Dinge nicht. Hier also erstmal
> der Beweis laut Skript:
>  
> [mm]O(y)[/mm] bzw [mm]o(y)[/mm] sind Landau Symbole
>  
> Differnzierbarkeit von f und h ist vorausgesetzt, es gilt
> also:
>  [mm]f(x+y) - f(x) = Df(x)y + o(y)[/mm]
>  [mm]h(x+y) - h(x) = Dh(x)y + o(y)[/mm]
>  
> [mm]h(x+y) f(x+y) - h(x) f(x) =[/mm]
>  [mm]= f(x+y) (h(x+y) - h(x)) + h(x) (f(x+y) - f(x)) =[/mm]
>  
> [mm]= (f(x) + Df(x)y + o(y)) (Dh(x)y + o(y)) + h(x)(Df(x)y + o(y)) =[/mm]
>  
> [mm]=(f(x) + \textcolor{red}{O(y)}) (Dh(x)y + o(y)) + h(x) (Df(x)y + o(y))=[/mm]
>  
> [mm]= f(x)Dh(x)y + h(x)Df(x)y + o(y) =[/mm]
>  [mm]=[f(x)Dh(x) + h(x)Df(x)]\textcolor{red}{y} + o(y)[/mm]
>  
> Mein Fragen beziehen sich auf die rot markierten
> Ausdrücke.
>  
> 1. Warum darf ich [mm]Df(x)y + o(y)[/mm] einfach als [mm]O(y)[/mm]
> schreiben?? Diese Landau-Symbole sind mir immer noch nicht
> so ganz geheuer...

$o(y)/y$ geht für [mm] $y\to [/mm] 0$ gegen 0. $O(y)/y$ bleibt für [mm] $y\to [/mm] 0$  beschränkt. Offensichtlich ist $Df(x)y [mm] \in [/mm] O(y)$, denn [mm] $\bruch{Df(x)y}{y} [/mm] = Df(x)$ hängt nicht von y ab. Wenn du $o(y)$ draufaddierst, was schneller gegen 0 geht als $O(y)$, bleibt die Summe in $O(y)$

>  und sehe ich das richtig: in der nächsten Zeile wurden
> dann alle [mm]O(y)[/mm] und [mm]o(y)[/mm] Ausdrücke zusammengefasst als [mm]o(y)[/mm]?
> Das hätte für mich zumindest Logik ;-)

Ja, das Produkt aus beiden geht schneller gegen 0 als y und ist damit $o(y)$.

> 2. Was ist mit dem [mm]y[/mm] in der letzten Zeile passiert? Denn in
> meiner Formel aus dem Satz habe ich kein [mm]y[/mm] mehr. Dass das
> [mm]o(y)[/mm] als Restglied wegfällt ist mir klar - warum fällt das
> [mm]y[/mm] weg?

Du hast vergessen, dass du in der Definition des Differentialquotienten durch y dividierst, bevor du den Grenzwert bildest.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Differentiation: Produktregel: Danke :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Sa 13.06.2009
Autor: GreatBritain

vielen lieben dank für die erklärung - jetzt ist mir das ganz klar :-)

gruß, GB

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]