www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differentialrechnung
Differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Ermittlung vom Maximum
Status: (Frage) für Interessierte Status 
Datum: 14:37 Fr 22.04.2011
Autor: archimedes_83

Aufgabe
Geben Sie das Verhältnis von zwischen L und K an, bei dem Y maximal wird.
Berechnung mittels eliminierung einer Variablen. Es gilt L+K=C

$ [mm] Y=K^\alpha L^1^-^\alpha [/mm] $

0 [mm] \le \alpha \le [/mm] 1

Nebenbedingung. K+L=C (C ist eine Konstante)

Hallo zusammen,

folgendens habe ich berechnet:

$ [mm] u=K^{\alpha} [/mm] $             u' $ [mm] =\alpha K^{\alpha-1} [/mm] $

$ [mm] v=(C-K)^{1-\alpha} [/mm] $   v'= $ [mm] -(1-\alpha)(C-K)^{-\alpha} [/mm] $

$ [mm] u'v+v'u=\alpha k^{\alpha-1}\cdot{}(C-K)^{1-\alpha}-(1-\alpha)(C-K)^{-\alpha}k^{\alpha} [/mm] $


Dies Ableitung setze ich =0 und erhalte k=a*C.

Ist der Weg bis hierhin richtig?

Wie kann ich beweisen, dass es sich um ein Maximum handelt ohne die zweite Ableitung zu benutzen? Diese ist so komplex das es keinen Sinn machen würde.

Vielen Dank für eure Tipps...


Archimedes

        
Bezug
Differentialrechnung: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Fr 22.04.2011
Autor: M.Rex

Hallo

Die Frage hattest du doch hier schon gestellt, bitte vermeide solche Doppelposts.

Marius


Bezug
                
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Fr 22.04.2011
Autor: archimedes_83

Hallo Rex,

ich wollte die Frage nochmals neu angehen. Darum habe ich sie so reingestellt.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]