www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differentialgleichungssystem
Differentialgleichungssystem < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Sa 09.07.2005
Autor: sternschnuppe

Hallo,
also ich habe die aufgabenstellung:
y' =  [mm] \pmat{ 3 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 } [/mm] y
ich bin dabei jetzt über den eigenwert ansatz gegangen:
|A -  [mm] \lambda [/mm] E| = 0 dabei bekomme ich für  [mm] \lambda [/mm] = 2 eine dreifache Nullstelle. Für |A-2E|c=0 bekomme ich die Lösung [mm] c=\vektor{x1 \\ x2 \\x1} [/mm]
Nach meinem verständnis wäre diese Lösung doch jetzt 2 dimensional oder? und dann habe ich die vertreter:
y1= [mm] \vektor{1 \\ 0 \\1}*exp(2*x) [/mm]
y2= [mm] \vektor{0 \\ 1 \\0}*exp(2*x) [/mm] oder nicht?
Also mein erstes Problem ist ob die Lösung bis dahin stimmt oder nicht und mein zweites Problem ist das jetzt ja noch eine Lösung fehlt. Dafür bin ich über den Ansatz  [mm] \vektor{ax+b \\ cx+d \\ex+f} [/mm] gegangen.
Dies führt zu:
[mm] \vektor{2ax +a+2b \\ 2cx+2d+c \\2ex+2f+e}*exp(2x) [/mm] = [mm] \vektor{(3a-e)x+3b-f \\ 2cx+2d \\ (a+e)x+b+f)} [/mm]
glaube ich zumindest sicher bin ich mir da auch schon leider nicht mehr also wäre ich sehr dankbar wenn mir das jemand sagen könnte und wenn das so stimmt wie muß ich dann weiterrechnen? ich dachte es läuft dann auf einen koeffizientenvergleich raus aber das funktioniert nicht wirklich und was ist dann mein ergebnis für y3?
Vielen dank an alle die mir damit helfen können und sich die mühe machen
sternschnuppe

        
Bezug
Differentialgleichungssystem: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 21:01 So 10.07.2005
Autor: MathePower

Hallo sternschnuppe,

>   y' =  [mm]\pmat{ 3 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 }[/mm] y
>  ich bin dabei jetzt über den eigenwert ansatz gegangen:
>  |A -  [mm]\lambda[/mm] E| = 0 dabei bekomme ich für  [mm]\lambda[/mm] = 2
> eine dreifache Nullstelle. Für |A-2E|c=0 bekomme ich die
> Lösung [mm]c=\vektor{x1 \\ x2 \\x1}[/mm]

das ist richtig.[ok]

>  Nach meinem verständnis
> wäre diese Lösung doch jetzt 2 dimensional oder? und dann
> habe ich die vertreter:

Du bekommst zwei Eigenvektoren. Demzufolge muß es noch einen Eigenvektor zweiter Stufe geben Den bekommst Du wie folgt:

[mm]\[ \begin{gathered} \left( {A\; - \;\lambda \;I} \right)^2 \;e_2 \; = \;0 \hfill \\ \Leftrightarrow \left( {A\; - \;\lambda \;I} \right)\;\left( {A\; - \;\lambda \;I} \right)\;e_2 \; = \;0 \hfill \\ \Leftrightarrow \;\left( {A\; - \;\lambda \;I} \right)\;e_2 \; = \;e_1 \hfill \\ \end{gathered} [/mm]


Hast Du alle Eigenvektoren bestimmt, so erhältst Du mit der Transformation [mm]y\; = \;C\;z[/mm] eine einfacher zu lösendes DGL-System:

[mm]z'\; = \;\left( {C^{ - 1} \;A\;C} \right)\;z[/mm]

>  y1= [mm]\vektor{1 \\ 0 \\1}*exp(2*x)[/mm].
>  y2= [mm]\vektor{0 \\ 1 \\0}*exp(2*x)[/mm]
> oder nicht?

Das sind höchstens Lösungen des obigen Systems. Das sind aber nicht alle Lösungen.

>  Also mein erstes Problem ist ob die Lösung bis dahin
> stimmt oder nicht und mein zweites Problem ist das jetzt ja
> noch eine Lösung fehlt. Dafür bin ich über den Ansatz  
> [mm]\vektor{ax+b \\ cx+d \\ex+f}[/mm] gegangen.
>  Dies führt zu:
>  [mm]\vektor{2ax +a+2b \\ 2cx+2d+c \\2ex+2f+e}*exp(2x)[/mm] =
> [mm]\vektor{(3a-e)x+3b-f \\ 2cx+2d \\ (a+e)x+b+f)}[/mm]
>  glaube ich

Nun zu dem Problem wie die Matrix C aussieht. Diese baut sich aus den Eigenvektoren 1. und 2. Stufe auf.

Dann sieht hier das neue DGL-System so aus:

[mm]z'\; = \;\left( {\begin{array}{*{20}c} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \\ \end{array} } \right)\;z[/mm]
  
Die Lösungen dieses Systems sind einfacher zu bestimmen.

Rücktransformation und Du erhältst die Lösungen für das ursprüngliche System.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]