www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung finden
Differentialgleichung finden < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung finden: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:22 Sa 21.05.2011
Autor: Roffel

Aufgabe
Die folgenden Funktionen sind Lösungen von DG's. Finden sie passende DG's.
(Hinweis : auf der rechten Seite der DGen sollten wieder x auftauchen.)

a) [mm] x(t)=e^{-3t}-t^{3}+t^{2}-\bruch{2}{3}*t+\bruch{2}{9} [/mm]

Hi
ich bräuchte mal eine genaue Vorgehensweie erläutert an diesem Beispiel... hab den Prinzip noch nicht raus.... und hab nur als Lösung da stehen:
[mm] x'=-3x-3t^{3} [/mm] und auf die Lösung komme ich nicht...

das einzige was ich bisher weiß das ich auf jedenfall einmal Ableiten muss, aber mehr auch nicht leider :)

da steht dann bei mir :

[mm] x'=-3e^{-3t}-3t^{2}+2t-\bruch{2}{3} [/mm] aber wie mach dann weiter? wie macht man das ganz allgemein?

Wäre nett wenn mir jemand helfen könnte...

Grüße

        
Bezug
Differentialgleichung finden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Sa 21.05.2011
Autor: fencheltee


> Die folgenden Funktionen sind Lösungen von DG's. Finden
> sie passende DG's.
>  (Hinweis : auf der rechten Seite der DGen sollten wieder x
> auftauchen.)
>  
> a) [mm]x(t)=e^{-3t}-t^{3}+t^{2}-\bruch{2}{3}*t+\bruch{2}{9}[/mm]
>  Hi
>  ich bräuchte mal eine genaue Vorgehensweie erläutert an
> diesem Beispiel... hab den Prinzip noch nicht raus.... und
> hab nur als Lösung da stehen:
>  [mm]x'=-3x-3t^{3}[/mm] und auf die Lösung komme ich nicht...
>  
> das einzige was ich bisher weiß das ich auf jedenfall
> einmal Ableiten muss, aber mehr auch nicht leider :)
>  
> da steht dann bei mir :
>  
> [mm]x'=-3e^{-3t}-3t^{2}+2t-\bruch{2}{3}[/mm] aber wie mach dann
> weiter? wie macht man das ganz allgemein?

jetzt fällt hier ja auf, dass hier viele terme aus der ausgangsgleichung auftauchen

hier bietet sich ja nun an, -3 auszuklammern, damit der e-term schonmal wie oben ist:

[mm] x'=-3*(e^{-3t}+t^2-\frac{2}{3}t+\frac{2}{9}) [/mm]

wie man sieht, tauchen hier alle terme aus x auf, bis auf [mm] -t^3 [/mm]
den "mogelt" man jetzt dazu

[mm] x'=-3*(e^{-3t}\red{-t^3+t^3}+t^2-\frac{2}{3}t+\frac{2}{9}) [/mm]
die roten terme ergeben ja jetzt zusammen 0, also haben wir nix falsch gemacht ;-)

der [mm] t^3 [/mm] stört aber nun und wird aus der klammer geschmissen

[mm] x'=-3*(e^{-3t}\red{-t^3}+t^2-\frac{2}{3}t+\frac{2}{9})\red{-3t^3} [/mm]

da die grosse klammer nun x entspricht ergibt sich
[mm] x'=-3*x-3t^3 [/mm]

>  
> Wäre nett wenn mir jemand helfen könnte...
>  
> Grüße

gruß tee

Bezug
                
Bezug
Differentialgleichung finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Sa 21.05.2011
Autor: Roffel

Danke danke danke!
das war mal eine "lupenreine" Erklärung, jetzt hab sogar ich es verstanden...
Vielen Dank :)

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]