www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differentialgleichung 1.Ordnun
Differentialgleichung 1.Ordnun < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 1.Ordnun: Frage
Status: (Frage) beantwortet Status 
Datum: 17:45 Mo 27.06.2005
Autor: holg47

Hallo!

Mir ist die Aussage des Satzes von Piccard-Lindelöf nicht ganz klar. Also ich verstehe nicht ganz, wann eine Dgl. die Vorraussetzungen des Satzes erfüllt.

Liege ich da richtig, wenn ich sage:

Die Funktion f(x,y)= y erfüllt die Vorraussetzungen, da f(x,y) = y einer Lipschitz-Bedingung mit L=1 erfüllt.

Die Funktion f(x.y)= [mm] y^2/3 [/mm] erfüllt die Vorraussetzungen nicht, da die Funktion [mm] y^2/3 [/mm] nur lokal einer Lipschiz-Bedingung genügt?????????


Vielen Dank!!!

        
Bezug
Differentialgleichung 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Mo 27.06.2005
Autor: SEcki


> Hallo!
>  
> Mir ist die Aussage des Satzes von Piccard-Lindelöf nicht
> ganz klar. Also ich verstehe nicht ganz, wann eine Dgl. die
> Vorraussetzungen des Satzes erfüllt.

Aber sonst ist der Rest klar?

> Die Funktion f(x,y)= y erfüllt die Vorraussetzungen, da
> f(x,y) = y einer Lipschitz-Bedingung mit L=1 erfüllt.

Lipschitz bzgl. y heisst ja: es existiert L, so daß [m]||f(x,y)-f(x,y')||\le L||y-y'||[/m] für alle y, y' in der Menge. Lokal Lipschitz heisst, daß es für alle [m](x,y)[/m] eine Umgebung dieses Punktes gibt, so daß sie Lipschitz stetig bzgl. y dort ist. (zB ist [m]f(x,y)=y^2[/m] lokal Lipschitz, aber nicht global)


Zu deiner Funktion: ja, dieses ist sogar global Lipschitz mit L=1. richtig so.

> Die Funktion f(x.y)= [mm]y^2/3[/mm] erfüllt die Vorraussetzungen
> nicht, da die Funktion [mm]y^2/3[/mm] nur lokal einer
> Lipschiz-Bedingung genügt?????????

Wieso die vielen '?'? Genau, es ist olakl Lipschitz stetig. Warum? Es ist eine quadratische Funktion, und lojkal kann man die durch den Schrabnkensatz abschätzen, also findet man so eine Konstante L - aber sicher nicht überall. ann kann man lokal den Satz von Picard-Lindelöf anwenden - und den dann immer weiter fortsetzen ... :-) (Manchmal kommt es blos auf die Norm an - mit einer anderen Norm kann man es global zu einer Lipschitz-Bedingung drücken.)

Letztes Beispiel: [m]y^{\bruch{3}{3}}[/m] ist in 0 nicht lokal Lipschitz (hoff ich mal ...) - die Ableitung geht hier auch gegen Unendlich in 0 - und tatsächlich gibt es dann zwei Lösungen.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]