www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Sa 02.07.2011
Autor: pyw

Aufgabe
[mm] y'=(x-y+3)^2 [/mm]


Hallo,

ich hab substituiert z:=x-y+3.

Dann ist [mm] z'=1-y'=1-z^2. [/mm] Diese DGL kann man mit Variablentrennung lösen:

[mm] \int\frac{dz}{1-z^2}=\frac{1}{2}\int\frac{1}{1-z}+\frac{1}{1+z}dz=\frac{1}{2}\log\left|\frac{1+z}{1-z}\right|=x+C. [/mm]

Also [mm] \left|\frac{1+z}{1-z}\right|=e^{2x}*C_1, C_1=e^{2C} [/mm]

Muss ich jetzt die komplette Fallunterscheidung machen, um nach z aufzulösen? Wolframalpha gibt nämlich nur eine einzige Lösung an.

(1. Fall -1<z<1, 2. Fall [mm] z\leq-1, [/mm] 3. Fall [mm] z\geq1) [/mm]

Bitte um Hilfe.

Gruß, pyw

        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 So 03.07.2011
Autor: MathePower

Hallo pyw,

> [mm]y'=(x-y+3)^2[/mm]
>  
> Hallo,
>  
> ich hab substituiert z:=x-y+3.
>  
> Dann ist [mm]z'=1-y'=1-z^2.[/mm] Diese DGL kann man mit
> Variablentrennung lösen:
>  
> [mm]\int\frac{dz}{1-z^2}=\frac{1}{2}\int\frac{1}{1-z}+\frac{1}{1+z}dz=\frac{1}{2}\log\left|\frac{1+z}{1-z}\right|=x+C.[/mm]
>  
> Also [mm]\left|\frac{1+z}{1-z}\right|=e^{2x}*C_1, C_1=e^{2C}[/mm]
>  
> Muss ich jetzt die komplette Fallunterscheidung machen, um
> nach z aufzulösen? Wolframalpha gibt nämlich nur eine
> einzige Lösung an.


Nein, das Vorzeichen läßt Du in die Konstante mit einfließen.


>  
> (1. Fall -1<z<1, 2. Fall [mm]z\leq-1,[/mm] 3. Fall [mm]z\geq1)[/mm]
>  
> Bitte um Hilfe.
>  
> Gruß, pyw


Gruss
MathePower

Bezug
                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mo 04.07.2011
Autor: pyw

danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]