www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Differentialgleichung
Differentialgleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Brauche Ansatz/Literatur
Status: (Frage) beantwortet Status 
Datum: 13:55 Di 14.06.2005
Autor: Faenol

Hi !

Ich hab hier folgende Aufgabe vorliegen, die wir mit Hilfe anderer Literatur lösen sollen, da wir diese Woche keine Vorlesungen haben...

Sei [mm] \mu [/mm] < 0 Wir sollen nun Lösungen [mm] f:\IR^n \to \IR [/mm]  f [mm] \not=0 [/mm]
der Gleichung  [mm] \Delta [/mm] f= c f bestimmen !

Das ist ja eine Differentialgleichung mit dem Laplace Opererator, aber ich hab jetzt schon in vielen Büchern gesucht, hab aber irgendwie keinen Schimmer.... wie man da anfängt !

Klar weiß ich dass  [mm] \Delta [/mm] f= [mm] \bruch{\partial^2 f}{ \partial x_1^2}+...+\bruch{\partial^2 f}{ \partial x_n^2} [/mm]
und
[mm] \Delta [/mm] f=div(grad f) aber das bringt mir irgendwie nichts...

Und weil ich keine Ahnung von der Aufgabe hab, dachte ich, vielleicht hat jemand von euch ein gutes Skript (Internet Literatur) dazu ?

Oder einen kurzen Ansatz wie man sowas anfängt !  

Tut mir leid, dass ich keine direkten Ansätze hab, aber ich möchte wirklich auch nur nen kleinen Ansatz (damit ich nicht ganz im Regen stehe)

Gruß

Faenôl


        
Bezug
Differentialgleichung: Tipp
Status: (Antwort) fertig Status 
Datum: 18:04 Di 14.06.2005
Autor: banachella

Hallo!

Versuch dir eine Idee zu holen beim eindimensionalen Fall: $x''=cx$...

Kommst du damit ein bisschen weiter? Sonst gebe ich dir gerne noch einen Tipp...

Gruß, banachella

Bezug
                
Bezug
Differentialgleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 14.06.2005
Autor: Faenol

Hi !

Ja, o,k, mit dem eindimensioalen ist ein guter Tipp !

Da hat man ja dann f''(x)+0*f'(x)- [mm] \mu*f(x)=0 [/mm]

bzw. die charakeristische  Gleichung [mm] m^2= \mu [/mm]

m= [mm] \pm \wurzel{\mu} [/mm] , Da [mm] \mu [/mm] < 0 sind die Lösung also komplex:

[mm] m=0-\mu*i [/mm] bzw. [mm] m=0+\mu*i [/mm]

Demnach wäre [mm] f(x)=C_1*cos(\mu*x)+C_2*sin(\mu*x) [/mm]

Wäre das erstmal so richtig ? Hab natürlich am Anfang [mm] f(x)=C*e^{mx} [/mm] gesetzt.

Aber selbst wenn dies nun richtig wäre ... wie übertrage ich das dann auf [mm] \IR^n [/mm] (beispielsweise n=2)? Die Funktion wird ja auf [mm] \IR [/mm] abbilden müssen:

Setze ich dann [mm] f(x,y)=C*e^{m(x,y)} [/mm] .. oder wie ?

Faenôl

Bezug
                        
Bezug
Differentialgleichung: Separationsansatz
Status: (Antwort) fertig Status 
Datum: 19:29 Mi 15.06.2005
Autor: MathePower

Hallo Faenol,


> Setze ich dann [mm]f(x,y)=C*e^{m(x,y)}[/mm] .. oder wie ?

Da setzt Du dann so an:

[mm]f\left( {x_{1} ,\; \cdots \;,\;x_{n} } \right)\; = \;\prod\limits_{i = 1}^{n} {g_{i} \left( {x_{i} } \right)}[/mm]

Setzt Du diesen Ansatz in die DGL ein, so erhältst Du dann (nach ein bischen Umformen):

[mm]\sum\limits_{i = 1}^{n} {\frac{{g_{i} ''}} {{g_{i} }}\; = \;c} [/mm]

Da die [mm]g_{i}[/mm] nur von der Variablen [mm]x_{i}[/mm] abhängen. kann der Quotient auch nur von [mm]x_{i}[/mm] abhängen. Dann ergibt sich folgendes:

[mm]\sum\limits_{i = 1}^{n} {c_{i} \left( {x_{i} } \right)} \; = \;c[/mm]

Nun da die Summe von linearen Funktionen verschiedener Variablen niemals eine Konstante ergeben kann, müssen die [mm]{c_i \left( {x_i } \right)}[/mm] selbst Konstante sein. Somit entsteht für jedes i eine DGL der Gestalt:

[mm]\frac{{g_{i} ''}} {{g_{i} }}\; = \;c_{i}[/mm]

Diese DGL läßt sich nun einfach lösen. Hat man alle Lösungen so wird die Funktion entsprechend dem Ansatz wieder zusammengesetzt.

Gruß
MathePower







Bezug
                                
Bezug
Differentialgleichung: Wäre das dann so richtig ?
Status: (Frage) beantwortet Status 
Datum: 14:27 Do 16.06.2005
Autor: Faenol

Hi !

Aha, das ist ja wirklich interessant !
Wobei ich mich ehrlich gesagt frage, wie man sowas in Literatur usw selbstständig finden soll. Finde ich schon hart !

Aber kommen wir zu meiner Frage, bzw. ich möchte meine Lösung verifiziert haben. *g*
Hab die Schritte alle verstanden und

jetzt muss ich ja z.B. die DGL: [mm] g_1^{''}-c_1*g_1=0 [/mm] lösen.

Das habe ich ja schon im letzten Post gemacht und hatte
[mm] K_1*cos(c*x)+K_2*sin(c*x) [/mm] raus:
demnach müßte doch nun
[mm] g_1(x_1)=K_1*cos(c_1*x_1)+K_2*sin(c_1*x_1) [/mm] die allgemeine reelle Lösung sein oder ?

Also

[mm] f(x_1,...,x_n)= \produkt_{i=1}^{n}K_{1i}*cos(c_i*x_i)+K_{2i}*sin(c_i*x_i) [/mm]

Jetzt frag ich mich noch folgendes:

Ist c eigentlich eine Zahl ? *weiß ich gar net genau* !

Wenn ja, dann müßte ja [mm] c_1=c_2..... [/mm] gelten !
Und dann wären die [mm] K_1 [/mm] und [mm] K_2 [/mm] ja eigentlich auch eindeutig oder ? (also hängen nicht vom i ab).

Oder wie sieht das hier mit dem K aus ?

Bezug
                                        
Bezug
Differentialgleichung: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:37 Do 16.06.2005
Autor: MathePower

Hallo Faenol,


> Aber kommen wir zu meiner Frage, bzw. ich möchte meine
> Lösung verifiziert haben. *g*
>  Hab die Schritte alle verstanden und
>
> jetzt muss ich ja z.B. die DGL: [mm]g_1^{''}-c_1*g_1=0[/mm] lösen.
>  
> Das habe ich ja schon im letzten Post gemacht und hatte
> [mm]K_1*cos(c*x)+K_2*sin(c*x)[/mm] raus:
>  demnach müßte doch nun
>  [mm]g_1(x_1)=K_1*cos(c_1*x_1)+K_2*sin(c_1*x_1)[/mm] die allgemeine
> reelle Lösung sein oder ?

Ja. Die Lösung läßt sich noch etwas anders schreiben.
Nehme hier die Exponentialdarstellung (Euler), hier mußt Du eigentlich nur beachten, daß sowohl der Realteil als auch der Imaginärteil eine Lösung der DGL darstellen.


>  
> Also
>
> [mm]f(x_1,...,x_n)= \produkt_{i=1}^{n}K_{1i}*cos(c_i*x_i)+K_{2i}*sin(c_i*x_i)[/mm]
>  
> Jetzt frag ich mich noch folgendes:
>  
> Ist c eigentlich eine Zahl ? *weiß ich gar net genau* !
>  

c ist eine Zahl, wie in der Aufgabenstellung angegeben.

> Wenn ja, dann müßte ja [mm]c_1=c_2.....[/mm] gelten !
>  Und dann wären die [mm]K_1[/mm] und [mm]K_2[/mm] ja eigentlich auch
> eindeutig oder ? (also hängen nicht vom i ab).

Nein, die [mm]c_{i}[/mm] haben nichts mit den [mm]K_{i}[/mm] zu tun.

Die [mm]c_{i}[/mm]  sind nur dazu da um die DGL zu erfüllen.
Während die [mm]K_{i}[/mm] Vielfache der Lösungsfunktionen sind.

Gruß
MathePower

Bezug
                                                
Bezug
Differentialgleichung: brav bedank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Fr 17.06.2005
Autor: Faenol

Hi MathePower !

Mal wieder ein großes Danke schön ! *brav bedank für deine Hilfe*

Gruß

Faenôl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]