www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Differentialgeometrie
Differentialgeometrie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgeometrie: aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 28.10.2004
Autor: choosy

Moin moin, hab grad mal n problem bei meinem diffgeo zettel, und zwar:

Sei [mm] $A(\cdot [/mm] ) : [mm] (a,b)\rightarrow GL_n(R)$ [/mm] eine diffbare Funktion,
es gelte
$$
[mm] \frac{d}{dt} [/mm] A(t) = A(t) K(t)
$$
was k sein soll ist nicht weiter angegeben, soll aber wohl [mm] $\in R^{n\times n}$ [/mm] sein
zeige:
a) [mm] $\forall [/mm] t [mm] \in [/mm] (a,b) : Spur K(t)=0 [mm] \Rightarrow [/mm] det(A(t))= konstant$
[mm] b)$\forall t\in [/mm] (a,b): (K(t))'=-K(t) [mm] \Rightarrow [/mm] A(t)(A(t))'=konst$

wobei $A'$ A transponiert ist.

danke schon mal fuer eure hilfe.

        
Bezug
Differentialgeometrie: Ansätze
Status: (Antwort) fertig Status 
Datum: 17:28 Fr 29.10.2004
Autor: Julius

Hallo choosy!

a) folgt sofort aus

[mm] $\frac{d}{dt} \det(A(t)) [/mm] = [mm] \det(A(t)) \cdot tr\left(A^{-1}(t) \frac{d}{dt}A(t) \right)$ [/mm]

(das müsste man noch herleiten)

-unter Beachtung der Differentialgleichung- und b) direkt aus der Produktregel.

Versuche es bitte mal. Ich hoffe ich konnte dir ein wenig helfen. :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]