www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Diffeomorphismus/Homöomorphi
Diffeomorphismus/Homöomorphi < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismus/Homöomorphi: Komme einfach nicht weiter...
Status: (Frage) beantwortet Status 
Datum: 22:06 Di 12.04.2005
Autor: ThommyM

Ich habe eine Frage zu dem Beweis folgenden Satzes:

Seien [mm]U, V \subset \IR^{d}[/mm] offen, [mm]f: U \to V[/mm] stetig differenzierbar, [mm]df(x)[/mm] sei invertierbar für alle [mm]x \in U[/mm] und [mm]f: U \to V[/mm] ein Homöomorphismus.

Dann gilt:
[mm]f^{-1}[/mm] ist stetig differenzierbar und f ist ein Diffeomorphismus.


Im Beweis soll zuerst gezeigt werden, dass für alle [mm]x \in U gilt: f^{-1} ist in f(x) differenzierbar[/mm]. Dazu werden zunächst folgende Reduktionen durchgeführt:
(a) Es genügt,  dies für [mm]x=0 \in U mit f(x)=0 \in V[/mm] zu zeigen.
Denn: Betrachte [mm]g(z)=f(z+x)-f(x)[/mm]. Dann gilt: g hat die gewünschten Eigenschaften in [mm]z=0 \gdw f hat die gewünschten Eigenschaften in x.[/mm] Ist das Verlangte für g gezeigt, so folgt der allgemeine Fall für f in x.

(b) Betracht die lineare Abb. [mm]K:=(df(0))^{-1} : \IR^{d} \to \IR^{d}[/mm]. Dann gilt mit der Kettenregel:
[mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm].
Also: Ist Satz im Spezialfall x = 0 , f(x) = 0 für [mm]K°f[/mm] gezeigt, so ist
[mm]f^{-1} = (K^{-1} ° (K ° f))^{-1} = (K ° f) ° (K^{-1})^{-1} = (K ° f)^{-1} ° K[/mm].
Somit hätte man die Differenzierbarkeit für [mm]f^{-1}[/mm] gezeigt.

(c) Nach (a) und (b) ist also zu zeigen:
Ist f(0)=0 mit [mm]df(0) = I_d[/mm], so ist [mm]f^{-1}[/mm] in 0 diffbar.

Reduktion (a) verstehe ich ja. Aber wie kommt man denn in (b) auf [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm]? Kann man [mm](df(0))^{-1}[/mm] einfach ausklammern, weil eigentlich ist das doch eine Matrix, oder nicht? Wie kann man denn dann die Kettenregel anwenden, dazu müsste man doch eine Matrix ableiten?
Den Rest von (b) verstehe ich dann, aber (3) macht mir wieder einige Schwierigkeiten. Warum muss denn [mm]df(0)=I_d[/mm] gelten? Oben war doch [mm]d(K ° f)(0) = I_d[/mm]. Oder wendet man jetzt alles auf [mm]K ° f[/mm] an?


        
Bezug
Diffeomorphismus/Homöomorphi: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 15.04.2005
Autor: Julius

Hallo Thomas!

> Ich habe eine Frage zu dem Beweis folgenden Satzes:
>  
> Seien [mm]U, V \subset \IR^{d}[/mm] offen, [mm]f: U \to V[/mm] stetig
> differenzierbar, [mm]df(x)[/mm] sei invertierbar für alle [mm]x \in U[/mm]
> und [mm]f: U \to V[/mm] ein Homöomorphismus.
>  
> Dann gilt:
>  [mm]f^{-1}[/mm] ist stetig differenzierbar und f ist ein
> Diffeomorphismus.
>  
>
> Im Beweis soll zuerst gezeigt werden, dass für alle [mm]x \in U gilt: f^{-1} ist in f(x) differenzierbar[/mm].
> Dazu werden zunächst folgende Reduktionen durchgeführt:
>  (a) Es genügt,  dies für [mm]x=0 \in U mit f(x)=0 \in V[/mm] zu
> zeigen.
>  Denn: Betrachte [mm]g(z)=f(z+x)-f(x)[/mm]. Dann gilt: g hat die
> gewünschten Eigenschaften in [mm]z=0 \gdw f hat die gewünschten Eigenschaften in x.[/mm]
> Ist das Verlangte für g gezeigt, so folgt der allgemeine
> Fall für f in x.
>  
> (b) Betracht die lineare Abb. [mm]K:=(df(0))^{-1} : \IR^{d} \to \IR^{d}[/mm].
> Dann gilt mit der Kettenregel:
>  [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm].
>  Also: Ist Satz im
> Spezialfall x = 0 , f(x) = 0 für [mm]K°f[/mm] gezeigt, so ist
>  [mm]f^{-1} = (K^{-1} ° (K ° f))^{-1} = (K ° f) ° (K^{-1})^{-1} = (K ° f)^{-1} ° K[/mm].
>  
> Somit hätte man die Differenzierbarkeit für [mm]f^{-1}[/mm]
> gezeigt.
>  
> (c) Nach (a) und (b) ist also zu zeigen:
>  Ist f(0)=0 mit [mm]df(0) = I_d[/mm], so ist [mm]f^{-1}[/mm] in 0 diffbar.
>  
> Reduktion (a) verstehe ich ja. Aber wie kommt man denn in
> (b) auf [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm]? Kann man
> [mm](df(0))^{-1}[/mm] einfach ausklammern, weil eigentlich ist das
> doch eine Matrix, oder nicht?

Nun, wie lautet die Kettenregel:

$d(K [mm] \circ [/mm] f)(0) = dK(f(0)) [mm] \cdot [/mm] df(0)$.

Wir müssen also $dK$ an der Stelle $f(0)$ berechnen.

Nun ist aber [mm] $K=(df(0))^{-1}$ [/mm] eine lineare Abbildung, nämlich die folgende:

$K : [mm] \begin{array}{ccc} \IR^d & \to &\IR^d\\[5pt] x & \mapsto & (df(0))^{-1} \cdot x.\end{array}$. [/mm]

Und das Differential einer linearen Abbildung, die durch eine Matrizenmultiplikation gegeben ist, ist immer konstant gleich der Matrix selbst (die beste lineare Annäherung an eine lineare Funktion ist die lineare Funktion selbst). Daher gilt:

$dK [mm] \equiv (df(0))^{-1}$, [/mm]

also insbesondere:

$dK(f(0)) = [mm] (df(0))^{-1}$. [/mm]

Jetzt klar? :-)


>  Wie kann man denn dann die
> Kettenregel anwenden, dazu müsste man doch eine Matrix
> ableiten?
>  Den Rest von (b) verstehe ich dann, aber (3) macht mir
> wieder einige Schwierigkeiten. Warum muss denn [mm]df(0)=I_d[/mm]
> gelten? Oben war doch [mm]d(K ° f)(0) = I_d[/mm]. Oder wendet man
> jetzt alles auf [mm]K ° f[/mm] an?

Genau das. :-)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]