www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Diffbarkeitsklasse
Diffbarkeitsklasse < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffbarkeitsklasse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:45 Mo 22.04.2013
Autor: valoo

Aufgabe
Sei [mm] X [/mm] eine differenzierbare Untermannigfaltigkeit eines affines Raumes. Zeigen Sie: Ist das Tangentialbündel [mm] T(X) [/mm] eine [mm] C^{k}[/mm] -Untermannigfaltigkeit, so ist [mm] X [/mm] eine [mm] C^{k+1} [/mm] -Mgfkt.

Hallo!

In der Vorlesung haben wir bereits gezeigt, dass das Tangentialbündel einer [mm] C^{k}-Mgfkt. [/mm] eine [mm] C^{k-1}-Mgfkt. [/mm] ist. Dabei wird ein Atlas für T(X) mittels der Ableitung von Karten von X konstruiert, weshalb das ganze dann noch (k-1)-mal stetig diff'bar ist. Wie allerdings zeigt man, dass die zu Grunde liegende Mannigfaltigkeit immer eine ums eins höhere Diffbarkeitsklasse hat?  Ich weiß nicht, wie man ausgehend von einem Atlas für das Tangentialbündel einen Atlas für X konstruieren könnte, der von höherer Differenzierbarkeitsklasse ist? Wie also kann man an diese Aufgabe herangehen?
Oder kann man einfach sagen: Hätte man einen Punkt x in X, sodass es nur eine [mm] C^{k}-Karte [/mm] um x gibt, so kriegt man so nur [mm] C^{k-1}-Karten [/mm] um (x,v) ( v Tangentialvektor an x). Diese sollten mit dem gegebenen Atlas auf T(X) verzträglich sein, können sie aber nicht sein, wenn sie nur [mm] C^{k-1} [/mm] sind?

        
Bezug
Diffbarkeitsklasse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Mi 24.04.2013
Autor: valoo

Oder ist diese Behauptung etwa falsch? (Dass der Grad der Diffbarkeit von M immer eins höher ist als von T(M)). Ich habe gerade einen Satz gefunden, der besagt, dass jede [mm] C^{k}-Mgfkt. [/mm] auch eine [mm] C^{m}-Mannigfaltigkeit [/mm] ist (für alle m [mm] \be [/mm] k ), wbeo die [mm] C^{m}-Struktur [/mm] mit der [mm] C^{k}-Struktur [/mm] verträglich ist und sie eindeutig bezüglich [mm] C^{m}-Diffeomorphie [/mm] ist. Bzw. ist jede [mm] C^{1}-Mgfkt [/mm] dann doch schon [mm] C^{k}-Mgfkt. [/mm] ist für beliebiges k, was das ganze trivial machen würde?

Bezug
        
Bezug
Diffbarkeitsklasse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 26.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]