www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Diff.gl. Konkav?
Diff.gl. Konkav? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff.gl. Konkav?: Tipp, Rückfrage
Status: (Frage) überfällig Status 
Datum: 17:41 Di 23.10.2012
Autor: Blaubart

Aufgabe
Mit p(t) werde die Populationsgröße einer gegebenen Spezies (z.B. Erdbevölkerung, Karpfen in
einem Teich, Atome in einer radioaktiven Substanz) zur Zeit t bezeichnet. Die totale Änderungsrate
[mm] \bruch{p'(t)}{p(t)} [/mm] sei eine Funktion r(t, p) der Zeit t und der Populationsgröße p. Die zeitliche Entwicklung der
Population wird somit durch die Wachstumsgleichung
p'(t) = r(t, p) *p(t)
beschrieben. Wir nehmen an, dass
r(t, p) = [mm] \alpha (N [/mm] - p)
gilt mit [mm] \alpha,N [/mm] > 0.

In welchen Bereichen ist p(t) konvex bzw. konkav?

Hallo,
in einer Teilaufgabe davor musste ich das Monotonie Verhalten bestimmen. Dies war noch relativ einfach. Hier gibt es jedoch ein Problem:
Wenn ich
p´´(t)= [mm] (\alpha*N*p(t)-\alpha*p(t)²)'=0 [/mm] setze komme ich im Endeffekt auf
N=2*p(t) als Lösung, diese Funktion kann ich jedoch nicht mehr eindeutig lösen. Mit [mm] p(t)=\bruch{N}{N*exp(\alpha*N*t_{0})(1/p_{0}-1/N)exp(-\alpha*N*t)+1} [/mm]
komme ich auf [mm] 0=N*exp(\alpha*N*t_{0})(1/p_{0}-1/N)exp(-\alpha*N*t)-1 [/mm]
Bei der Monotonie kam ich auf die schöne Lösung [mm] N=p_{0}. [/mm]
Hier scheint dies nicht der Fall zu sein, oder hab ich einen Fehler gemacht?
Gruß Blaubart


        
Bezug
Diff.gl. Konkav?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 24.10.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]