www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Diff.-rechnung Quotientenregel
Diff.-rechnung Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff.-rechnung Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Do 07.09.2006
Autor: mary7

Aufgabe
y = [mm] 3(x^{-2} [/mm] - [mm] x^{-4} [/mm] )  /  [mm] x^{-1} [/mm] + [mm] x^{-2} [/mm]

Lösung: y' = 3 ( [mm] -x^{-2} [/mm] + 2 [mm] x^{-3} [/mm] ) = -3 [mm] x^{-2} [/mm] + 6 [mm] x^{-3} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo,

ich habe bei oben genannter Aufgabe einige Schwierigkeiten. Ich habe sie nach der Quotientenregel aufgelöst, also so:

(u/v)' = ((u'v - uv') / v²).

Mit dem Ableiten habe ich keine Probleme, aber dann kommt der Bruch, den ich nicht so weit auflösen bzw. vereinfachen kann, bis er der Lösung entspricht.

Ich habe bis hierhin gerechnet:

y' = (-3 [mm] x^{-2} [/mm] + 9 [mm] x^{-4} [/mm] + 6 [mm] x^{-5} [/mm] ) / ( 1 + [mm] 2x^{-1}+ x^{-2} [/mm] )

(ich habe aus Zähler & Nenner [mm] x^{-2} [/mm] ausgeklammert und gekürzt)

Jetzt komme ich nicht mehr weiter. Ich kann nichts mehr ausklammern und kürzen; ich stecke fest.
Ich habe meine Rechnung schon mehrfach kontrolliert, ob es Rechenfehler gibt, aber nichts gefunden.

Findet vielleicht jemand von euch meinen Fehler oder hat eine Idee, wie ich weiterkomme?
Falls mein letzter Stand der Rechnung für euch keinen Sinn macht, kann ich euch auch die ganze Rechnung schreiben, vielleicht steckt ja da der Fehler drin.

Ich danke euch allen schon mal im Voraus!! Wäre ganz toll von euch, wenn mir jemand weiterhelfen könnte!



Viele Grüße,
Marie

        
Bezug
Diff.-rechnung Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Do 07.09.2006
Autor: Zwerglein

Hi, mary,

Also das ist Deine Funktion?
(Wenn nicht, ist mein Lösungsvorschlag logischerweise hinfällig!)

f(x) = [mm] \bruch{3*(x^{-2}-x^{-4})}{x^{-1}+x^{-2}} [/mm]

Sei mir nicht böse, aber:
Kein Mensch lässt diesen Term so stehen und leitet blind ab!
Da erweitern wir erst mal (Zähler und Nenner) mit [mm] x^{4}: [/mm]

f(x) =  [mm] \bruch{3*(x^{2}-1)}{x^{3}+x^{2}} [/mm]

Und nun:
f'(x) = [mm] 3*\bruch{2x*(x^{3}+x^{2}) - (x^{2}-1)*(3x^{2}+2x)}{(x^{3}+x^{2})^{2}} [/mm]

= [mm] 3*\bruch{x*[2*(x^{3}+x^{2}) - (x^{2}-1)*(3x+2)]}{x^{4}*(x+1)^{2}} [/mm]

= [mm] 3*\bruch{2x^{3}+2x^{2} - 3x^{3} - 2x^{2}+3x+2}{x^{3}*(x+1)^{2}} [/mm]

= [mm] 3*\bruch{-x^{3}+3x+2}{x^{3}*(x+1)^{2}} [/mm]


mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]