www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichten, Unabhängigkeit
Dichten, Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichten, Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Di 18.01.2011
Autor: override88

Aufgabe
Der Zufallsvektor (X, Y) sei absolutstetig verteilt mit der Dichte
f(x, [mm] y)=\begin{cases} \bruch{2}{3}x+\bruch{4}{3}y, & \mbox{für } x \in [0, 1], y \in [0, 1] \\ 0, & \mbox{sonst} \end{cases} [/mm]

a) Bestimmen Sie die Dichten [mm] f_{X} [/mm] und [mm] f_{Y}. [/mm]
b) Bestimmen Sie die Verteilungsfunktionen [mm] F_{X} [/mm] und [mm] F_{Y}. [/mm]
c) Berechnen Sie [mm] P_{X}([0, \bruch{1}{2}]), P_{Y}([0, \bruch{1}{2}]), P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}). [/mm]
d) Sind X und Y unabhängig?

Hallo,

ich bin mir bei obigen Teilaufgaben nicht ganz sicher. Kann mich wer korrigieren falls meine Ansätze falsch sind?

zu a)
In der Vorlesung haben wir gelernt, dass wir die "Randdichte" [mm] f_{X} [/mm] bestimmen indem wir f nach y integrieren (analog für [mm] f_{Y}). [/mm]
Also erhalte ich
[mm] f_{X}(x) [/mm] = [mm] \integral_{0}^{1}{f(x, y) dy} [/mm] = [mm] \begin{cases} \bruch{2}{3}, & \mbox{für } x \in [0, 1] \\ 0, & \mbox{sonst} \end{cases} [/mm]
[mm] f_{Y}(y) [/mm] = [mm] \integral_{0}^{1}{f(x, y) dx} [/mm] = [mm] \begin{cases} \bruch{1}{3}, & \mbox{für } y \in [0, 1] \\ 0, & \mbox{sonst} \end{cases} [/mm]

Was mich etwas verunsichert ist, dass wenn ich [mm] f_{X} [/mm] oder [mm] f_{Y} [/mm] (Lebesgue-)integriere, nicht 1 rauskommt. Das müsste doch für eine Dichte der Fall sein oder?

zu b)
Hier integriere ich einfach die entsprechenden Dichten:
[mm] F_{X}(x) [/mm] = [mm] \integral_{-\infty}^{x}{f_{X}(y) dy} [/mm] = [mm] \begin{cases} 0, & \mbox{für } x < 0 \\ \bruch{2}{3}x, & \mbox{für} x \in [0, 1] \\ 1, & \mbox{sonst} \end{cases} [/mm]
[mm] F_{Y}(y) [/mm] = [mm] \integral_{-\infty}^{y}{f_{Y}(x) dx} [/mm] = [mm] \begin{cases} 0, & \mbox{für } y < 0 \\ \bruch{1}{3}y, & \mbox{für} y \in [0, 1] \\ 1, & \mbox{sonst} \end{cases} [/mm]

zu c)
[mm] P_{X}([0, \bruch{1}{2}]) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{f_{X}(x) dx} [/mm] = [mm] [\bruch{2}{3}x]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{3} [/mm]

[mm] P_{Y}([0, \bruch{1}{2}]) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{f_{Y}(y) dy} [/mm] = [mm] [\bruch{1}{3}y]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{6} [/mm]

[mm] P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}) [/mm] habe ich iteriert (Satz von Fubini) berechnet:
[mm] P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{\integral_{0}^{\bruch{1}{2}}{\bruch{2}{3}x+\bruch{4}{3}y dx dy}} [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{[\bruch{1}{3}x² + \bruch{4}{3}y]_{0}^{\bruch{1}{2}} dy} [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{\bruch{1}{12} dy} [/mm] = [mm] [\bruch{1}{12}y]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{24} [/mm]

Stimmt das?

zu d)
Hier bin ich mir bei der Begründung nicht sicher.
Sind X, Y abhängig, da das Produkt der Randverteilungen ungleich dem Produkt der gemeinsamen Verteilung ist?
[mm] (\bruch{1}{3} [/mm] * [mm] \bruch{1}{6} [/mm] = [mm] \bruch{1}{18} \not= \bruch{1}{24} [/mm]
Man kann das auch irgendwie über die Dichten begründen.

Danke für Hilfe/Vorschläge.

        
Bezug
Dichten, Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Di 18.01.2011
Autor: luis52


>  
> ich bin mir bei obigen Teilaufgaben nicht ganz sicher. Kann
> mich wer korrigieren falls meine Ansätze falsch sind?
>  
> zu a)
>  In der Vorlesung haben wir gelernt, dass wir die
> "Randdichte" [mm]f_{X}[/mm] bestimmen indem wir f nach y integrieren
> (analog für [mm]f_{Y}).[/mm]
>  Also erhalte ich
>   [mm]f_{X}(x)[/mm] = [mm]\integral_{0}^{1}{f(x, y) dy}[/mm] = [mm]\begin{cases} \bruch{2}{3}, & \mbox{für } x \in [0, 1] \\ 0, & \mbox{sonst} \end{cases}[/mm]

[notok] [mm] $\frac{2 x}{3}+\frac{2}{3}$ [/mm]

> Was mich etwas verunsichert ist, dass wenn ich $ [mm] f_{X} [/mm] $ oder $ [mm] f_{Y} [/mm] $
> (Lebesgue-)integriere, nicht 1 rauskommt.

Zurecht.

> Das müsste doch für eine Dichte  der Fall sein oder?

Ja.


vg Luis



Bezug
                
Bezug
Dichten, Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Di 18.01.2011
Autor: override88


> [notok] [mm]\frac{2 x}{3}+\frac{2}{3}[/mm]

Wie kommt man darauf? Ist nicht [mm] \integral_{0}^{1}{\bruch{2}{3}x + \bruch{4}{3}y dy} [/mm] = [mm] [\bruch{2}{3}x [/mm] + [mm] \bruch{2}{3}y²]_{0}^{1} [/mm] = [mm] \bruch{2}{3}x [/mm] + [mm] \bruch{2}{3} [/mm] - [mm] (\bruch{2}{3}x [/mm] + 0) = [mm] \bruch{2}{3} [/mm] ?


Bezug
                        
Bezug
Dichten, Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 18.01.2011
Autor: luis52


> > [notok] [mm]\frac{2 x}{3}+\frac{2}{3}[/mm]
>  
> Wie kommt man darauf? Ist nicht
> [mm]\integral_{0}^{1}{\bruch{2}{3}x + \bruch{4}{3}y dy}[/mm] =
> [mm][\bruch{2}{3}x[/mm] + [mm]\bruch{2}{3}y²]_{0}^{1}[/mm] = [mm]\bruch{2}{3}x[/mm] +
> [mm]\bruch{2}{3}[/mm] - [mm](\bruch{2}{3}x[/mm] + 0) = [mm]\bruch{2}{3}[/mm] ?
>  

[notok]

$ [mm] \integral_{0}^{1}\left(\bruch{2}{3}x + \bruch{4}{3}y\right) [/mm] dy [mm] =\integral_{0}^{1}\bruch{2}{3}xdy [/mm] + [mm] \integral_{0}^{1}\bruch{4}{3}y dy=\bruch{2}{3}x\integral_{0}^{1}dy [/mm] + [mm] \bruch{4}{3}\integral_{0}^{1}y dy=\ldots$ [/mm]


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]