www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Dichteberechnung eines Baumes
Dichteberechnung eines Baumes < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichteberechnung eines Baumes: Frage
Status: (Frage) beantwortet Status 
Datum: 15:27 So 01.05.2005
Autor: sandmann0187

Hallo. Habe von jemanden die frage gestellt bekommen, wie groß die Dichte eines Baumstammes in Form eines Holzzylinders mit dem Durchmesser 60cm ist, der 15cm aus dem Wasser ragt. Das ist wohl eine Aufgabe aus der 8. Klasse. Das muss irgendwie mit dem Archimedichen Gesetz zu tun haben, ich weiß aber nicht was.
Kann mir vielleicht jemand helfen, danke

        
Bezug
Dichteberechnung eines Baumes: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 01.05.2005
Autor: Paulus

Hallo Andreas

> Hallo. Habe von jemanden die frage gestellt bekommen, wie
> groß die Dichte eines Baumstammes in Form eines
> Holzzylinders mit dem Durchmesser 60cm ist, der 15cm aus
> dem Wasser ragt. Das ist wohl eine Aufgabe aus der 8.
> Klasse. Das muss irgendwie mit dem Archimedichen Gesetz zu
> tun haben, ich weiß aber nicht was.

Hast du schon eine Skizze gemacht? Einen Kreis (der Stamm im Querschnitt), die Wasseroberfläche, die genau durch die Mitte des Radius verläuft (weil 15 cm ein Viertel von 60 cm ist). Dann eine Parallele zum Wasserspiegel, durch den Kreismittelpunkt. Und die Verbindung von Kreismittelpunkt mit den Schnittpunkten des Wasserspiegels mit dem Kreis, welche dann mit der Geraden durch die Mitte einen Winkel von 30° bilden.

So kannst du ganz einfach das Volumen des Teils berechnen, der unter dem Wasser liegt. Dazu berechnest du einfach die Fläche des  Kreisessegmentes, das unter dem Wasser liegt. Nennen wir diese Fläche einfach mal $A_$. Dann ist dieses Volumen $A*l_$, wobei $l_$ die Länge des Baumstammes ist. Das verdrängte Wasser hat das gleiche Gewicht wie der ganze Baumstamm.

Der ganze Baumstamm hat aber ein Volumen von [mm] $\pi*r^2*l$ [/mm] (r ist 30 cm).

Das Gewicht des Stammes ist [mm] $V*\rho$ [/mm]

Darum gilt: [mm] $\pi*r^2*l*\rho [/mm] = A*l$. (Das Wasser hat ja eine spezifische Dichte $1_$.

Oder: [mm] $\rho [/mm] = [mm] \bruch{A}{\pi r^2}$ [/mm]

In Worten: das verhältnis der unter der Wasseroberfläche liegenden Fläche zur ganzen Fläche.  

So, ich hoffe, mit diesen Hinweisen kannst du die Aufgabe jetzt mühelos aus dem Ärmel schütteln. :-)

Mit lieben Grüssen

Paul


Bezug
                
Bezug
Dichteberechnung eines Baumes: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 So 01.05.2005
Autor: sandmann0187

danke für die schnelle antwort. hab mir das mal durchgelesen und durchgerechnt und bin auf eine Dichte von 0,8045 g/cm³ gekommen. klingt gar nicht so schlecht. danke nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]