www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mechanik" - Dichte berechnen
Dichte berechnen < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Sa 13.09.2014
Autor: elektroalgebra93

Aufgabe
Ein Körper mit konstanter Dichte schwimmt im Wasser, dabei befinden sich 80% seines Volumens unter Wasser. In einer zweiten Flüssigkeit befindet sich nur 72% seines Volumens unter der Flüssigkeitsoberfläche.
1) Wie gross ist die Dichte des Körpers?
2) Wie gross ist die Dichte der zweiten Flüssigkeit?
Dichte des [mm] Wassers:1000kg/m^3 [/mm]


Hallo,

Ich komme mit dieser Aufgabe gar nicht klar und bräuchte ein Gedanken anstoss..

Meine erste Idee wäre eventuell: da 80%, hat der Körper ein Volumen von 800kg... oder eventuell eine Dichte von [mm] 800kg/m^3 [/mm]

Kann mir da jemand nen Tipp geben bitte

Danke vielmals

        
Bezug
Dichte berechnen: Gleichgewicht
Status: (Antwort) fertig Status 
Datum: 19:41 Sa 13.09.2014
Autor: Infinit

Hallo elektroalgebra93,
Deine Frage kannst Du Dir selbst beantworten, wenn Du Dir klar machst, dass ein Körper im Wasser oder einer anderen Flüssigkeit solange steigt oder sinkt, bis der Gewichtskraft eine betragsmäßig gleich große Kraft entgegenwirkt.
Etwas vermathematisert bedeutet dies (mit Rho als Dichte):
[mm] V_{eingetauchter\, K{"o}rper} * \rho_{Wasser} = V_{gesamter\, K{"o}rper} * \rho_{K{"o}rper} [/mm]
Nun ja, und bei konstanter Körperdichte kennst Du natürlich das Verhältnis der beiden Volumina von Gesamtkörper und eingetauchtem Körper. Und siehe da, die von Dir vermutete Dichte kommt da raus.
Viele Grüße,
Infinit

Bezug
                
Bezug
Dichte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 So 14.09.2014
Autor: elektroalgebra93


>  [mm]V_{eingetauchter\, K{"o}rper} * \rho_{Wasser} = V_{gesamter\, K{"o}rper} * \rho_{K{"o}rper}[/mm]
>  
> Nun ja, und bei konstanter Körperdichte kennst Du
> natürlich das Verhältnis der beiden Volumina von
> Gesamtkörper und eingetauchtem Körper. Und siehe da, die
> von Dir vermutete Dichte kommt da raus.

Also folgendermassen dann:
[mm] \bruch{\rho_{Wasser}}{\rho_{K{"o}rper}}=\bruch{V_{gesamter\, K{"o}rper}}{V_{eingetauchter\, K{"o}rper}} [/mm]

[mm] \rho_{K{"o}rper}=\bruch{80}{100}*\rho_{Wasser} [/mm]
[mm] \rho_{K{"o}rper}=800kg/m^3 [/mm]

Nun für die Teilaufgabe b):
[mm] \bruch{\rho_{Fluessigkeit}}{\rho_{K{"o}rper}}=\bruch{V_{gesamter\, K{"o}rper}}{V_{eingetauchter\, K{"o}rper}} [/mm]
[mm] \rho_{Fluessigkeit}=\bruch{100}{72}*\rho_{K{"o}rper} [/mm]
[mm] \rho_{Fluessigkeit}=1111,1111kg/m^3 [/mm]

Ist das richtig so ?

Vielen dank.

Bezug
                        
Bezug
Dichte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 14.09.2014
Autor: rmix22


> >  [mm]V_{eingetauchter\, K{"o}rper} * \rho_{Wasser} = V_{gesamter\, K{"o}rper} * \rho_{K{"o}rper}[/mm]

>  
> >  

> > Nun ja, und bei konstanter Körperdichte kennst Du
> > natürlich das Verhältnis der beiden Volumina von
> > Gesamtkörper und eingetauchtem Körper. Und siehe da, die
> > von Dir vermutete Dichte kommt da raus.
>  
> Also folgendermassen dann:
>  
> [mm]\bruch{\rho_{Wasser}}{\rho_{K{"o}rper}}=\bruch{V_{gesamter\, K{"o}rper}}{V_{eingetauchter\, K{"o}rper}}[/mm]
>  
> [mm]\rho_{K{"o}rper}=\bruch{80}{100}*\rho_{Wasser}[/mm]
>  [mm]\rho_{K{"o}rper}=800kg/m^3[/mm]
>  
> Nun für die Teilaufgabe b):
>  
> [mm]\bruch{\rho_{Fluessigkeit}}{\rho_{K{"o}rper}}=\bruch{V_{gesamter\, K{"o}rper}}{V_{eingetauchter\, K{"o}rper}}[/mm]
>  
> [mm]\rho_{Fluessigkeit}=\bruch{100}{72}*\rho_{K{"o}rper}[/mm]
>  [mm]\rho_{Fluessigkeit}=1111,1111kg/m^3[/mm]
>  
> Ist das richtig so ?

Ja. Die vier angegebenen Nachkommastellen täuschen allerdings eine vermutlich nicht vorhandene Genauigkeit vor. Also entweder ganz genau (10000/9) und/oder so viele Nachkommastellen wie bei den Angabegrößen.

RMix

Bezug
                                
Bezug
Dichte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 So 14.09.2014
Autor: elektroalgebra93

Da hast du natürlich recht! Bin nur immer zu faul um dann noch nen Bruch zu schreiben.
Herzlichen dank. :)

Bezug
                                        
Bezug
Dichte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 So 14.09.2014
Autor: rmix22


> Da hast du natürlich recht! Bin nur immer zu faul um dann
> noch nen Bruch zu schreiben.
>  Herzlichen dank. :)

Hier reicht ja 1111 kg/m³ - das kommt der  Faulheit ja sogar noch mehr entgegen ;-)

RMix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]