www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Dichte
Dichte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte: Rechnungskorrektur
Status: (Frage) beantwortet Status 
Datum: 16:40 Sa 28.05.2011
Autor: Frisco

Aufgabe
[mm]X_{1}, X_{2}[/mm] std. normalverteilt und unabhängig mit Dichte [mm]f_{x_{i}}(x_{i})=\bruch{1}{\wurzel{2\pi}} exp(-\bruch{x_{i}^2}{2})[/mm]
Berechne gemeinsame Dichte von [mm]Y=\vektor{y_{1} \\ y_{2}}:=\vektor{x_{1}+x_{2} \\ x_{1}-x_{2}}[/mm]




Hallo ich habe die Aufgabe soweit gelöst, bitte korrigiert doch meine Rechnung ob ich alles richtig gemacht habe! :-)
Um diese Aufgabe zu lösen habe ich den Trafo.-Satz verwendet
Dazu sei [mm]X:=(0,\infty)^2 ; Y:=(0,\infty)\textrm{x}(-\infty,\infty) \textrm{offen}[/mm]

[mm]\Phi:X\rightarrow Y; \Phi(x_{1},x_{2})=(x_{1}+x_{2},x_{1}-x_{2})=:(y_{1},y_{2}) \textrm{bijektiv}[/mm]


[mm]\Rightarrow (\Phi^{-1})(y_{1},y_{2})=(\bruch{1}{2}(y_{1}+y_{2}),\bruch{1}{2}(y_{1}-y_{2})) [/mm]

weiter erhalte ich von der det. der Jacobi Matrix

[mm]\Rightarrow| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|=\bruch{1}{2}[/mm]

Nach dem Trafo.-Satz gilt doch dann für die gemeinsame Dichte von [mm]Y[/mm]

[mm]f_{Y}(y_{1},y_{2})=f_{x_{1},x_{2}}((\Phi^{-1})(y_{1},y_{2}))*| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|[/mm]

[mm]\Rightarrow f_{Y}(y_{1},y_{2})= \bruch{1}{\wurzel{2\pi}} exp[-\bruch{1}{2}(\bruch{1}{2}(y_{1}+y_{2})+\bruch{1}{2}(y_{1}-y_{2}))^2]*\bruch{1}{2}=...=\bruch{1}{2\wurzel{2\pi}}exp[-\bruch{1}{2}y^2_{1}][/mm]

Ich hoffe das stimmt was ich ausgerechnet habe?!

Danke für eure Hilfe/Korrektur


        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 28.05.2011
Autor: MathePower

Hallo Frisco,


> [mm]X_{1}, X_{2}[/mm] std. normalverteilt und unabhängig mit Dichte
> [mm]f_{x_{i}}(x_{i})=\bruch{1}{\wurzel{2\pi}} exp(-\bruch{x_{i}^2}{2})[/mm]
>  
> Berechne gemeinsame Dichte von [mm]Y=\vektor{y_{1} \\ y_{2}}:=\vektor{x_{1}+x_{2} \\ x_{1}-x_{2}}[/mm]
>  
>
>
> Hallo ich habe die Aufgabe soweit gelöst, bitte korrigiert
> doch meine Rechnung ob ich alles richtig gemacht habe! :-)
>  Um diese Aufgabe zu lösen habe ich den Trafo.-Satz
> verwendet
>  Dazu sei [mm]X:=(0,\infty)^2 ; Y:=(0,\infty)\textrm{x}(-\infty,\infty) \textrm{offen}[/mm]
>  
> [mm]\Phi:X\rightarrow Y; \Phi(x_{1},x_{2})=(x_{1}+x_{2},x_{1}-x_{2})=:(y_{1},y_{2}) \textrm{bijektiv}[/mm]
>  
>
> [mm]\Rightarrow (\Phi^{-1})(y_{1},y_{2})=(\bruch{1}{2}(y_{1}+y_{2}),\bruch{1}{2}(y_{1}-y_{2})) [/mm]
>  
> weiter erhalte ich von der det. der Jacobi Matrix
>  
> [mm]\Rightarrow| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|=\bruch{1}{2}[/mm]


[ok]


>  
> Nach dem Trafo.-Satz gilt doch dann für die gemeinsame
> Dichte von [mm]Y[/mm]
>  
> [mm]f_{Y}(y_{1},y_{2})=f_{x_{1},x_{2}}((\Phi^{-1})(y_{1},y_{2}))*| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|[/mm]
>  
> [mm]\Rightarrow f_{Y}(y_{1},y_{2})= \bruch{1}{\wurzel{2\pi}} exp[-\bruch{1}{2}(\bruch{1}{2}(y_{1}+y_{2})+\bruch{1}{2}(y_{1}-y_{2}))^2]*\bruch{1}{2}=...=\bruch{1}{2\wurzel{2\pi}}exp[-\bruch{1}{2}y^2_{1}][/mm]


Hier muß es doch lauten:

[mm]f_{Y}(y_{1},y_{2})= \bruch{1}{\wurzel{{\left(2\pi\right)^{\red{2}}}}} exp[-\bruch{1}{2} ( \ \left\blue{(} \ \bruch{1}{2}(y_{1}+y_{2}) \ \right\blue{)}^{2}+\left\blue{(} \ \bruch{1}{2}(y_{1}-y_{2}) \ \right\blue{)}^2 \ )]*\bruch{1}{2}[/mm]


>  
> Ich hoffe das stimmt was ich ausgerechnet habe?!


>  
> Danke für eure Hilfe/Korrektur
>


Gruss
MathePower  

Bezug
                
Bezug
Dichte: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Sa 28.05.2011
Autor: Frisco

Ohhhh da habe ich wohl was übersehen ;-)
Öhm aber woher kommt das Quadrat unter der Wurzel als das [mm]\bruch{1}{\wurzel{(2\pi})^\red{2}}[/mm]?!


Bezug
                
Bezug
Dichte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:29 Sa 28.05.2011
Autor: Frisco


Ohhhh da habe ich wohl was übersehen ;-)
Öhm aber woher kommt das Quadrat unter der Wurzel als das [mm] \bruch{1}{\wurzel{(2\pi})^\red{2}} [/mm]?!


Bezug
                        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Sa 28.05.2011
Autor: MathePower

Hallo Frisco,

>
> Ohhhh da habe ich wohl was übersehen ;-)
>  Öhm aber woher kommt das Quadrat unter der Wurzel als das
> [mm]\bruch{1}{\wurzel{(2\pi})^\red{2}} [/mm]?!
>  


Siehe hier: []p-dimensionale Standardnormalverteilung


Gruss
MathePower

Bezug
                                
Bezug
Dichte: Korrekur
Status: (Frage) überfällig Status 
Datum: 19:18 Sa 28.05.2011
Autor: Frisco


Oh stimmt ich habe den Fehler gesehen...
Nun ich weiß nicht, aber in meiner Rechnung ist noch ein Fehler,
wenn ich so weiter rechne wie du dann komme ich auf folgendes:
[mm]\bruch{1}{2\pi}exp[-\bruch{1}{2}(\bruch{1}{4}((y_{1}+y_{2})^2+(y_{1}-y_{2})^2))] \textrm{ mit Binomischer Formel folgt}[/mm]
[mm]=\bruch{1}{2\pi}exp[-\bruch{1}{2}(\bruch{1}{4}(2y^2_{1}+2y^2_{2}))]=\bruch{1}{2\pi}exp[-\bruch{1}{4}(y^2_{1}+y^2_{2})][/mm]
aber es darf nicht[mm]-\bruch{1}{4} \textrm{ sondern es muss doch } -\bruch{1}{2}\textrm{ heißen?!}[/mm]
also [mm]\bruch{1}{2\pi}exp[-\bruch{1}{2}(y^2_{1}+y^2_{2})][/mm] dieses ist nach meinem Buch richtig...
Siehtst du meinen Fehler?!


Bezug
                                        
Bezug
Dichte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 30.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]