www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Diagonalmatrix bestimmen
Diagonalmatrix bestimmen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Mo 27.04.2009
Autor: Igor1

Hallo,

gegeben sei die reelle 2x2Matrix [mm] A=\pmat{ 2 & 2 \\ 1 & 3 }. [/mm]
Finden Sie eine invertierbare Matrix C, so dass [mm] D=C^{-1}AC [/mm] eine Diagonalmatrix ist.

Ich habe dazu etwas im Internet gefunden und zwar, dass man die berechneten Eigenvektoren einfach in die Spalten von C setzt und damit soll das erledigt sein. Man hat C gefunden und [mm] C^{-1} [/mm] muss/wird auch existieren.

Meine Frage ist : warum kann man so vorgehen?
Ich muss eine Hausübung machen und einfach ein Argument zu übernehmen , ohne es zu verstehen, ist eigentlich nicht der Sinn der Sache.


        
Bezug
Diagonalmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 27.04.2009
Autor: angela.h.b.


> Hallo,
>  
> gegeben sei die reelle 2x2Matrix [mm]A=\pmat{ 2 & 2 \\ 1 & 3 }.[/mm]
>  
> Finden Sie eine invertierbare Matrix C, so dass [mm]D=C^{-1}AC[/mm]
> eine Diagonalmatrix ist.
>  
> Ich habe dazu etwas im Internet gefunden und zwar, dass man
> die berechneten Eigenvektoren einfach in die Spalten von C
> setzt und damit soll das erledigt sein. Man hat C gefunden
> und [mm]C^{-1}[/mm] muss/wird auch existieren.
>  
> Meine Frage ist : warum kann man so vorgehen?

Hallo,

man führt  eine Basistransformation durch:

man stellt nun die Darstellungsmatrix der durch A bzgl der Standardbasis repräsentierten linearen Abbildung  bzgl einer Basis aus Eigenvektoren auf.

In den Spalten der neuen Matrix stehen dann die Bilder der neuen Basisvektoren in Koordinaten bzgl. der neuen Basis.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]