www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Diagonalmatrix
Diagonalmatrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalmatrix: diagonalisierbar
Status: (Frage) beantwortet Status 
Datum: 19:31 So 23.09.2007
Autor: fuchsone

Aufgabe
Bestimme die diagonalbasis

wenn A= [mm] \pmat{ 3 & -1 & 2 \\ 2 & 0 & 6 \\ 0 & 0 & 3} [/mm]

als eigenwerte erhalte ich

[mm] \lambda [/mm] 1 = 1 [mm] \lambda [/mm] 2 =2 [mm] \lambda [/mm] 3 = 3

und als eigenräume  [mm] \vektor{ 1 \\ 2 \\ 0 } \vektor{ 1 \\ 1 \\ 0 } \vektor{ 0 \\ 2 \\ 1 } [/mm]  

es gilt [mm] D=S\*A\*S^{-1} [/mm]

S ist bei mir [mm] \pmat{ 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 0 & 1} [/mm]

[mm] S^{-1} [/mm] = [mm] \pmat{ -1 & 1 & -2 \\ 2 & -1 & 2 \\ 0 & 0 & 1} [/mm]

nun bekomme aber keine diagonalmatrix raus
aber ich finde keinen fehler
kann mir jemand helfen


        
Bezug
Diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 23.09.2007
Autor: schachuzipus

Hallo fuchsone,



> Bestimme die diagonalbasis
>
> wenn A= [mm]\pmat{ 3 & -1 & 2 \\ 2 & 0 & 6 \\ 0 & 0 & 3}[/mm]
>  als
> eigenwerte erhalte ich
>  
> [mm]\lambda[/mm] 1 = 1 [mm]\lambda[/mm] 2 =2 [mm]\lambda[/mm] 3 = 3
>  
> und als eigenräume  [mm]\vektor{ 1 \\ 2 \\ 0 } \vektor{ 1 \\ 1 \\ 0 } \vektor{ 0 \\ 2 \\ 1 }[/mm]

Ui, das sind EigenVEKTOREN, Eigenräume sind der Spann derselben..


Du hast bei deiner Rechnung $S$ und [mm] $S^{-1}$ [/mm] vertauscht.

Da $A$ diagonalisierbar ist, gilt die Ähnlichkeitsbeziehung [mm] $A=S^{-1}DS$ [/mm]

Hier ist [mm] $S^{-1}$ [/mm] diejenige Matrix, deren Spalten die Eigenvektoren sind.

Also gilt [mm] $D=SAS^{-1}$ [/mm] , also alles mit vertauschten "Farben"

Rechne mal nach, es passt ;-)


LG

schachuzipus

  



Bezug
                
Bezug
Diagonalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 So 23.09.2007
Autor: fuchsone

sorry ich habs jetzt^^

hab mich verrechnet danke es haut hin

frage somit zurückgezogen!!

Bezug
        
Bezug
Diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 23.09.2007
Autor: fuchsone

sorry ich finde immernoch keine lösung

wenn jetzt mein [mm] S^{-1} [/mm] mein S ist dann
ist doch [mm] S^{-1}\ [/mm] * I =  S

wenn ich dann D = [mm] SAS^{-1} [/mm] rechen erhalt ich immernoch die falsche Matrix



Bezug
                
Bezug
Diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 23.09.2007
Autor: barsch

Hi,

du hast S und [mm] S^{-1} [/mm] richtig berechnet. Wie schachuzipus geschrieben hat, hast du lediglich S und [mm] S^{-1} [/mm] vertauscht.

Das heißt, du musst [mm] D=S^{-1}*A*S [/mm] berechnen:

[mm] S^{-1}=\pmat{ -1 & 1 & -2 \\ 2 & -1 & 2 \\ 0 & 0 & 1} [/mm]

[mm] S=\pmat{ 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 0 & 1} [/mm]

[mm] S^{-1}*A=\pmat{ -1 & 1 & -2 \\ 2 & -1 & 2 \\ 0 & 0 & 1}*\pmat{ 3 & -1 & 2 \\ 2 & 0 & 6 \\ 0 & 0 & 3}=\pmat{ -1 & 1 & -2 \\ 4 & -2 & 4 \\ 0 & 0 & 3} [/mm]

[mm] D=S^{-1}*A*S=\pmat{ -1 & 1 & -2 \\ 4 & -2 & 4 \\ 0 & 0 & 3}*\pmat{ 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 0 & 1} =\pmat{ 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3} [/mm]

MfG barsch

Bezug
        
Bezug
Diagonalmatrix: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Di 25.09.2007
Autor: MarthaLudwig

Hallo fuchsone!

Du mußt D=S^-1*A*S berechnen.

Es kommt dann eine Diagonalmatrix heraus.

Hoffe,daß ich helfen konnte.

Grüße Martha.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]