www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Diagonalisierung
Diagonalisierung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierung: -aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 20.03.2013
Autor: love

HAllo Leute, ich hoffe Ihr könnt mir weiterhelfen.Ich lerne gerade für eine Nachschreibeklausur und folgende Aufgabe ist gegeben. Für welche Werte von [mm] a\in\IR [/mm]  ist die Matrix diagonalisierbar. [mm] A=\pmat{ 3 & a \\ -1 & 1 }. [/mm] Ich ahbe zunächst das charakteristische Polynom ausgerechnet. Da kam [mm] z^2-4z+3+a [/mm] raus. Nun rechne ich mit der pq-Formel die EW aus. Für a=1 kommen als Eigenwerte z=2 raus d.h nicht diag. Nun fängt mein Problem an für a ungleich 1 wie soll ich das jetzt zeigen

        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mi 20.03.2013
Autor: schachuzipus

Hallo love,


> HAllo Leute, ich hoffe Ihr könnt mir weiterhelfen.Ich
> lerne gerade für eine Nachschreibeklausur und folgende
> Aufgabe ist gegeben. Für welche Werte von [mm]a\in\IR[/mm]  ist die
> Matrix diagonalisierbar. [mm]A=\pmat{ 3 & a \\ -1 & 1 }.[/mm] Ich
> ahbe zunächst das charakteristische Polynom ausgerechnet.
> Da kam [mm]z^2-4z+3+a[/mm] raus. Nun rechne ich mit der pq-Formel
> die EW aus. Für a=1 kommen als Eigenwerte z=2 raus [ok] d.h
> nicht diag.

Richtig! Aber wieso nicht?

> Nun fängt mein Problem an für a ungleich 1
> wie soll ich das jetzt zeigen

Welche Kriterien kennst du denn für Diagonalisierbarkeit?

Wie war das mit dem charakt. Polynom und dem Zerfallen in lauter verschiedene Linearfaktoren?

Wenn du kein Kriterium kennst oder dir keines einfällt, bestimme die Diagonalmatrix ...

Gruß

schachuzipus


Bezug
                
Bezug
Diagonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 20.03.2013
Autor: love

Also ich kenne nur 2 Kriterin für die Diagonalisierbarkeit.
1. Algebraische VFH= geom. VFH dann folgt diag. (ich glaub das ist uninteressant bei dieser Aufgabe)
2. Wenn es 3 paarweise verschieden EW ex. dann folgt diag. Hier gibt es ja nur zwei EW die gleich sind daraus folgt nicht diag.
Ich weiss jetzt nicht wie ich weiter machen muss :(

Bezug
                        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 20.03.2013
Autor: schachuzipus

Hallo nochmal,


> Also ich kenne nur 2 Kriterin für die
> Diagonalisierbarkeit.
>  1. Algebraische VFH= geom. VFH dann folgt diag. (ich glaub
> das ist uninteressant bei dieser Aufgabe)

Nicht unbedingt.

Für [mm] $a\neq [/mm] 1$ hast du zwei veschiedene Nullstellen des char. Polynoms, beide mit VFH 1 (also algebr. VFH = 1)

Was weißt du über den Zusammenhang zwischen algebr. und geom. VFH?

>  2. Wenn es 3 paarweise verschieden EW ex. dann folgt diag.

Aha. Nie gehört. Du hast doch max. 2 (verschiedeme) Eigenwerte hier. Davon sollen 3 paarweise verschieden sein?!

Interessant!

Besser nacharbeiten, wie das noch gleich war ...

> Hier gibt es ja nur zwei EW die gleich sind daraus folgt
> nicht diag.
>  Ich weiss jetzt nicht wie ich weiter machen muss :(

Steht in 1.

;-)

Gruß

schachuzipus


Bezug
                                
Bezug
Diagonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mi 20.03.2013
Autor: love

Alsoo:)
Wir haben ja zwei EW für a ungleich 1, die lauten ja [mm] z1=2+\wurzel{1+a} [/mm] und z2= [mm] 2-\wurzel{1+a}. [/mm] Die treten jeweils einmal auf also algb VFH=1. Die geom VFH ist dim des Eigenraums. ich muss hier die Gleichheit algb=geom. zeigen. OK, das habe ich verstanden, aber stimmen meine EW´e für a ungleich 1.
Für a=1 ist das ganze leicht, aber diese Wurzel nervt :) Wenn die EW für a ungleich 1 stimmen, dann kommt bei mir dim=2 raus, was wiederum heißt nicht diag, da alg VFH 1 ungleich geom.VFH 2

Bezug
                                        
Bezug
Diagonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 20.03.2013
Autor: schachuzipus

Hallo nochmal,


> Alsoo:)
>  Wir haben ja zwei EW für a ungleich 1, die lauten ja
> [mm]z1=2+\wurzel{1+a}[/mm] und z2= [mm]2-\wurzel{1+a}.[/mm]

Unter der Wurzel steht doch [mm]1\red -a[/mm]

> Die treten
> jeweils einmal auf also algb VFH=1. Die geom VFH ist dim
> des Eigenraums. ich muss hier die Gleichheit algb=geom.
> zeigen. OK, das habe ich verstanden, aber stimmen meine
> EW´e für a ungleich 1.

Bis auf das Vorzeichen.


> Für a=1 ist das ganze leicht, aber diese Wurzel nervt :)
> Wenn die EW für a ungleich 1 stimmen, dann kommt bei mir
> dim=2 raus, was wiederum heißt nicht diag, da alg VFH 1
> ungleich geom.VFH 2

Schau doch endlich mal im Skript oder deiner Mitschrift nach, wie der Zusammenhang zwischen algebr. und geometr. VFH ist. Rumraten bringt gar nix!

Die geometr. VFH ist IMMER [mm]\le[/mm] der algebr. VFH und IMMER [mm]\ge 1[/mm]

Also [mm]\le 1[/mm] und [mm]\ge 1[/mm], damit [mm]=1[/mm] und stimmt daher mit der algebr. VFH überein.

Feddich!

Gruß

schachuzipus


Bezug
                                                
Bezug
Diagonalisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Mi 20.03.2013
Autor: love

ja schuldigung,dass war ein Tippfehler und tut mir leid,dass du wegen mir so genervt wurdest, aber wenn ich darauf gekommen wäre oder es irgendwo gesehen hätte, dann würde ich dich gar nicht fragen. Trotzdem danke schön!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]