www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Diagonalisierbarkeit Matrizen
Diagonalisierbarkeit Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Do 04.05.2006
Autor: Kuebi

Hallo ihr!

Hab mal ne Frage zur Diagonaliserbarkeit von Matrizen:

Wenn ich eine Matrix auf Diagonaliserbarkeit überprüfen soll, gehe ich folgendermaßen vor:
Ich berechne das charakteristische Polynom und daraus folgend die Eigenwerte der Matrix.
Nun gilt ja, dass die Matrix diagonalisierbar ist, wenn die geometrische Vielfachheit gleich der algebraischen ist, dass die Matrix diagonalisierbar ist. Im Falle dass die geometrische VFH kleiner als die algebraische Vielfachheit ist, ist sie nicht mehr diagonaliserbar.

Okay, soweit so gut.
Meine Frage nun: Eine Matrix kann ja durchaus mehrerer Eigenwerte besitzen :-) Infolgedessen auch mehrere Eigenräume zu den jeweiligen Eigenwerten.
Tritt nun der Fall ein, dass für einen Eigenwert der Matrix die geom. VFH gleich der algebr. VFH ist für einen anderen Eigenwert die geom. VFH echt kleiner als die algebr. VFH, ist die Matrix dann diagonalieserbar???

Ich hoffe dass ich einigermaßen verständlich geschrieben habe! Vielleicht hab ich auch irgendwo einen Verständnisfehler!

Lg, Kübi

        
Bezug
Diagonalisierbarkeit Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Do 04.05.2006
Autor: Ashvini

Hallo Kübi!

Es ist schon möglich, dass dieser Fall auftritt.

Jede Matrix ist genau dann diagonalisierbar, wenn die algebraische Vielfachheit zum einem Eigenwert  [mm] \lambda_{i} [/mm] gleich der geometrischen Vielfachheit ist, für alle i! Das heißt, wenn man zwei Eigenwerte hat, muss bei jedem dieser zwei Eigenwerte die algebraische Vielfachheit gleich der geometrischen Vielfachheit sein. Falls es bei einem Eigenwert nicht der Fall sein sollte, so ist die Matrix nicht diagonalisierbar!

Ich hoffe, ich konnte dir weiterhelfen!

Lg,
Ashvini

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]