www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Di 03.09.2013
Autor: Blubie

Aufgabe
Sei f:V->V eine lineare Abbildung und B eine Basis von V sowie A die darstellende Matrix von f bezüglich der Basis B. Dann gilt: f ist diagonalisierbar genau dann, wenn A diagonalisierbar ist.


Hallo, ich würde gerne den Beweis zu diesem Satz sehen. Die eine Richtung kriege ich hin:

Sei f diagonalisierbar. Dann gibt es eine Basis C von V, die aus Eigenvektoren von f besteht. Die darstellende Matrix D von f bzgl. der Basis C ist dann eine Diagonalmatrix. Mit dem Basistransfromationssatz wissen wir, dass es nun eine invertierbare Matrix S gibt mit D=S^(-1)*A*S. Somit ist A ähnlich zu einer Diagonalmatrix, also diagonalisierbar.

Bei der anderen Richtung komme ich jedoch nicht weiter. Wenn A diagonalisierbar ist, so gibt es eine invertierbare Matrix S mit D=S^(-1)*A*S, wobei D eine Diagonalmatrix ist. Wie genau ich das aber im Beweis nutzen kann ist mir leider nicht klar.

Auch nach längerem Überlegen bin ich hier leider nicht weitergekommen und hoffe nun auf eure Hilfe.


Herzlichen Dank und viele Grüße

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Mi 04.09.2013
Autor: Schadowmaster

Hey Blubie,

nehmen wir uns mal von deiner Matrix $S$ eine Spalte $v$ heraus.
Kannst du zeigen, dass $v$ ein Eigenvektor ist?
Wenn du das hast, dann verwende, dass $S$ invertierbar ist. Was sagt dir das über die Spalten?


lg


Schadow

Bezug
                
Bezug
Diagonalisierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:19 Mi 04.09.2013
Autor: Blubie

Hi Schadow, ich danke dir für deinen Tipp. Ich schreibe meinen Beweis mal hier herein. Falls das einfacher geht, dann sag bitte bescheid :)

Sei f:V->V eine lineare Abbildung und B eine Basis von V. Weiterhin sei A die Darstellungsmatrix von f bzgl. der Basis B, und A sei diagonalisierbar. Dann gibt es eine invertierbare Matrix S mit [mm] D=S^{-1}*A*S [/mm] mit [mm] D=\pmat{ \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}}, S=(u_{1}|...|u_{n}). [/mm] Dann gilt auch [mm] A*S=S*D_{} \Rightarrow A*u_{j}=\lambda_{j}*u_{j} [/mm] für alle j [mm] \in [/mm] {1,...,n}. Dann sind [mm] u_{1},...,u_{n} [/mm] Eigenvektoren von A (bzw. von [mm] \phi_{A}). [/mm] Weiterhin ist S invertierbar [mm] \Rightarrow [/mm] rang(S)=n [mm] \Rightarrow u_{1},...,u_{n} [/mm] sind linear unabhängig.
Weiter wissen wir, dass wenn A die darstellende Matrix von f bzgl. der Basis [mm] B=(b_{1},...,b_{n}) [/mm] ist das Folgende gilt: Sei [mm] v=k_{1}*b_{1}+...+k_{n}*b_{n} [/mm] ein Vektor aus V und [mm] f(v)=r_{1}*b_{1}+...+r_{n}*b_{n} [/mm] gilt, dann ist ist [mm] A*\vektor{k_{1} \\ ... \\ k_{n}}=\vektor{r_{1} \\ ... \\ r_{n}}. [/mm] Es gilt nun [mm] A*u_{i}=\lambda_{i}*u_{i}. [/mm] Sei [mm] S=(s_{ij}), w_{i}=s_{11}*b_{1}+...+s_{n1}*b_{n}. [/mm] Mit obiger Ausführung wissen wir, dass [mm] w_{1},...,w_{n} [/mm] Eigenvektoren von V sind. Wir zeigen noch, dass diese linear unabhängig sind. Es gelte [mm] k_{1}*w_{1}+...+k_{n}*w_{n}=0 \Rightarrow k_{1}*(s_{11}*b_{1}+...+s_{n1}*b_{n})+...+k_{n}*(s_{1n}*b_{1}+...+s_{nn}*b_{n})=0 \Rightarrow (k_{1}*s_{11}+...+k_{n}*s_{1n})*b_{1}+...+(k_{1}*s_{n1}+...+k_{n}*s_{nn})*b_{n}=0 \Rightarrow [/mm]
[mm] k_{1}*s_{11}+...+k_{n}*s_{1n}=0 \wedge [/mm] ... [mm] \wedge k_{1}*s_{n1}+...+k_{n}*s_{nn}=0 \Rightarrow k_{1}*u_{1}+...+k_{n}*u_{n}=0 \Rightarrow k_{1}=0 \wedge [/mm] ... [mm] \wedge k_{n}=0. [/mm] Fertig.

Ich hoffe das ist nicht zu umständlich.

Bezug
                        
Bezug
Diagonalisierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 06.09.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]