www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Diagonalisierbarkeit
Diagonalisierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 00:35 Mi 06.07.2005
Autor: Phoebe

Hallöchen Leute, ja... ich schon wieder... und schon wieder mit dem gleichen Thema. Ich hoffe ich nerve euch nich, aber hoffentlich kann mir trotzdem noch mal jemand helfen....
Ich habe diese Frage in keinem anderen Forum gestellt.
Also, hier die Aufgabe:
Für welche a,b [mm] \varepsilon \IR [/mm] ist die Matrix C = [mm] \pmat{ -3 & 0 & 0 \\ 2a & b & a \\ 10 & 0 & 2 } [/mm] diagonalisierbar.
Jetzt habe ich für die Eigenwerte [mm] \lambda_{1} [/mm] = 3, [mm] \lambda_{2} [/mm] = b und [mm] \lambda_{3} [/mm] = 2 heraus. Wenn ich jetzt die Eigenvektoren ausrechne, bekomme ich immer nur den gleichen Vektor raus, nämlich: [mm] \vektor{1 \\ 0 \\ 2}... [/mm] Das kann ja nich hinhauen. Was habt ich denn nun schon wieder falsch gemacht bzw, gibt es denn keinen einfacheren Weg als über die Formel D = [mm] P^{-1} [/mm] C P ?
Gruß, Phoebe

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Mi 06.07.2005
Autor: Hanno

Hallo Phoebe!

Du hast richtig gerechnet: die Eigenwert der dir gegebenen Matrix sind 2,3 und b. Allerdings weißt du nicht, ob diese verschieden sind.

Nehmen wir an, wir haben [mm] $b\not= [/mm] 2,3$. Damit besitzt das charakteristische Polynom von M drei verschiedene Eigenwerte - M ist daher diagonalisierbar. Sagt dir das Kriterium etwas? Wenn nicht, dann kommt hier eine kleine Erklärung: da $b,2,3$ verschiedene Eigenwerte von $M$ sind, gilt [mm] $Eig(M,2),Eig(M,3),Eig(M,b)\not= \{0\}$, [/mm] d.h. du kannst aus jedem der Eigenräume einen Vektor auswählen. Wie du (hoffentlich) weißt, sind Vektoren zu verschiedenen Eigenwerten linear unabhängig. Du erhältst also eine Menge von 3 linear unabhängigen Eigenvektoren. Da du über einem Vektorraum der Dimension 3 arbeitest, ist diese Menge eine Basis desselben. Bezüglich dieser Basis hat M Diagonalgestalt.

Nehmen wir nun an, es gilt $b=2$ oder $b=3$. Dann zerfällt [mm] $\chi_M$ [/mm] zwar immernoch komplett in Linearfaktoren (was eine notwendige BEdingung für die Diagonalisierbarkeit einer Matrix/einer linearen Abbildung ist), doch wissen wir nicht, ob wir, wie oben, eine Basis aus Eigenvektoren aus den Eigenräumen $Eig(M,2)$ und $Eig(M,3)$ auswählen können. Dies ist genau dann der Fall, wenn $dim(Eig(M,2))+dim(Eig(M,3))=3$ gilt. Genau dann nämlich kannst du zwei Basen der beiden Eigenräume wählen, sie vereinen, und erhältst somit eine linear unabhängige Menge von drei Vektoren, also eine Basis, bezüglich welcher M abermals Diagonalgestalt hat. Zu prüfen ist also lediglich, ob einer der beiden Eigenräume die Dimension 2 besitzt. Dazu errechnest du einfach den Lösungsraum von $M x=2x$ bzw. $M x=3x$ und prüfst seine Dimension; du musst ihn nicht einmal explizit ausrechnen - wenn du schon vorher den Rang der Koeffizientenmatrix des GLS ablesen kannst, kannst du über $dim(L)=3-Rang(A)$ die Dimension des Lösungsraumes ablesen.


Versuche dies bitte einmal.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]